Learning Climate in Dental Hygiene Education: A Longitudinal Case Study of a Japanese and Canadian Programme

Atsushi Saito, Susanne Sunell, Lance Rucker, Margaret Wilson, Yoko Sato,
Ginny Cathcart

Short running title: Learning climate in dental hygiene education

Atsushi Saito, Department of Clinical Oral Health Science, Tokyo Dental College, Tokyo, Japan
Susanne Sunell, Lance Rucker, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
Margaret Wilson, Centre for Innovation and Development, NorQuest College, Edmonton, Alberta, Canada
Yoko Sato, Miyagi Advanced Dental Hygienist College, Sendai, Japan
Ginny Cathcart, Centre for Instructional Development, Vancouver Community College, Vancouver, Canada

Correspondence to:
Atsushi Saito, DDS, PhD
Department of Clinical Oral Health Science, Tokyo Dental College
2-9-18 Misaki-cho, Chiyoda-ku,
Tokyo 101-0061, Japan
Tel: +81 3 5275 1721 Fax: +81 3 3262 3420
E-mail: atsaito@tdc.ac.jp
Abstract

Educational climates have been found to have important influences on learning, but little feedback has been obtained from dental hygiene students. The purpose of the present study was to gain an understanding of the learning climate in Japanese and Canadian dental hygiene programmes for the purpose of making positive changes. A survey instrument with 10 dimensions relating to learning climate was adapted from business and dental models, and designated as the Dental Hygiene Student Learning Climate Survey (DHS-LCS). Higher scores indicated a more positive and supportive learning climate, and lower scores indicated an environment that is potentially less desirable. Students enrolled in a Japanese and a Canadian dental hygiene programme participated in this four-year study from 2005 to 2008. A total of 402 surveys were returned for an average response rate of 62%. The mean total DHS-LCS score of Canadian students was statistically significantly higher than that of Japanese students (p < 0.001) in all years tested, indicating that the Canadian students’ perceptions of their learning environment were more favorable than those of the Japanese students. Based on analyses of the DHS-LCS data, interventions to improve learning climates were designed and implemented. There were statistically significant improvements (p < 0.01) in DHS-LCS scores of Japanese and Canadian students over the years of the study, suggesting that that student-centered interventions improved the perceived learning environment. The instrument appears to be helpful in identifying student concerns and can be used to implement interventions to help support a healthier learning climate.

Keywords: Dental hygiene education, Learning climate, Learning environment, Student-centered education, Survey instrument
Introduction

Internationally there is a trend for increased length in dental hygiene entry-to-practice programmes (1). There has been a 100% increase in the number of countries with baccalaureate programmes 1998 to 2006 and several other countries are working towards baccalaureate education as the entry-to-practice credential.

Current Japanese dental hygiene education has been rapidly expanding towards 3-year associate or 4-year baccalaureate degrees in order to meet the diverse needs of society (2, 3). The increase in length of basic education is expected to help Japanese dental hygiene to evolve into a highly skilled profession with an increased academic orientation.

In Canada, current dental hygiene education is even more eclectic (4); programmes vary in prerequisites, in length, and in institutional setting. They range from 2- and 3-year diploma programmes to 4-year baccalaureate programmes. Entry-to-practice in all Canadian provinces and territories occurs at the diploma level, although the Canadian Dental Hygienists Association has a long standing policy statement supporting baccalaureate degree as the entry-to-practice credential (5).

In Canada as well as in Japan, education has been viewed as an important attribute to promote professional development (6-8). However, the sheer volume of knowledge and the different abilities required for dental hygiene practice does create challenges within educational programmes (9). It has resulted in programmes with compressed curriculum given that legislative changes for increased length of dental hygiene education have often lagged behind curriculum changes. In addition, times of fiscal restraint in higher education have resulted in further difficulties within dental hygiene education. In essence many dental hygiene programmes are in a state of flux and transformation; this was the case in 2004 when the two programmes involved in our study, the Miyagi Advanced Dental Hygienist College (MADH) in Sendai, Japan and Vancouver Community College in
Vancouver, Canada, initiated an international exchange programme (3).

The term learning climate refers to “the tone or atmosphere” of the learning environment (10). Genn (11) describes it as the “the soul and spirit … of the educational environment and curriculum.” It is the perception of the environment that is central to the term climate (11-13). Climate is not about the environment per se; it is about perceptions of the environment, how people respond to the environment (14). It is also different from the concept of culture that implies shared beliefs while climate is based on individual perceptions. However, Genn (11) emphasizes the usefulness and power of climate in analyzing dimensions surrounding the educational environment.

In the dental education community there is a long-standing perception that students experience stress during their dental education related to a variety of environmental factors (15-22). In nursing (23, 24) as well as medical education (11, 13), a supportive learning environment is considered to be of paramount importance to the development of required knowledge and abilities. While there have been many discussions about the amelioration of dental hygiene education, they have largely focused on curriculum content and outcomes (25-29). The views of dental hygiene students have often been overlooked.

Learning environments have been found to affect many areas including academic achievement (30, 31), motivation to learn (32), self-confidence (33, 34), capacity for critical thinking (35) and overall moral (22). Hence it is important to gain an overall understanding of this environment. Evaluations of individual courses and faculty are commonly used to identify strengths and weaknesses of courses but may fail to address other important educational issues as they do not ask for reflections about the overall curricular experience and entire learning environment within the programme (19, 36). Thus, negative perceptions may go unnoticed despite a systematic approach to the evaluation of all courses; these could have consequences for student performance within
the programme as well as their satisfaction with the profession they are entering. Students are often disappointed to discover that the feedback they have provided in course evaluations do not result in any change. It appears that dental faculties tend to use scores on standardized tests as a reflection of educational quality, rather than student perspectives (37).

Beginning in the 1970s, a number of survey-based instruments were developed to assess students’ perceptions of their learning experiences and the overall environment within a programme. Learning climate research became a major line of inquiry in higher education as health educators developed interest in exploring students’ opinions about their learning experiences (19). The Medical School Learning Environment Survey (MSLES) (38) was the catalyst for a number of instruments developed to explore the unique environment of health professions. The MSLES spawned a number of similar assessment instruments including the Clinical Learning Environment Inventory (CLEI) (24) in nursing education, the Dundee Ready Education Environment Measure (DREEM) in medical education (39, 40), DSLES (Dental Student Learning Environment Survey) in dental education (19). These instruments contain a number of items ranging from 50 (40) to 55 (19) clustered into domains. This makes them more complex instruments to implement particularly in the context of language and cultural difference as in our case involving Japanese and Canadian dental hygiene programmes. However, an instrument adapted from the business world (36, 41) provided an interesting option based on 10 dimension of learning. It was implemented at the University of Alberta with their dental hygiene and dentistry students during a time of change to bringing about positive change in the clinical and laboratory environments. It contained some similar dimensions to the other instruments, yet also included dimensions related to value placed on ideas, respect and standards that were considered important in the culture of dental hygiene education.
The focus of this study is directed to gaining a greater understanding of dental hygiene students’ perception of their learning environment. We were interested in further exploring the learning climate in dental hygiene programmes through a longitudinal study that allowed for the implementation of interventions to support learning. As cultural and environmental differences influence the way people think (42), we also wished to compare the perceptions of Japanese and Canadian students regarding their dental hygiene education.
Methods

Study population

The target sample for this four-year study included the dental hygiene students from 2005 to 2008 at VCC, Vancouver, Canada and at MADH in Sendai, Japan. The 2nd and 3rd year students were selected to gain an appropriate cross section of dental hygiene students. This decision was also based on a curricular issue; the first year curriculum in British Columbia can be taken in various postsecondary organizations across the province and was, therefore, not under the administrative control of VCC. Both groups were experiencing major changes in their curriculum based on previous review processes.

Instrument

The survey design was based on a business model ‘Learning Habit Questionnaire’(41) and on its author-approved adaptation to a dental version implemented at the University of Alberta (36). It was designed to measure how well organizations encourage the learning habit. The instrument was then modified to reflect the overall education environment as opposed to a clinical and laboratory context. This was necessary given the fact that clinical experiences are offered in a number of off-site locations for the MADH students. The instrument included the following dimensions (Table 1): Physical environment, Learning resources, Encouragement to learn, Communication, Rewards, Value place upon ideas, Practical help available, Warmth and Support, Standards, and Respect. The communication dimension was further subdivided into 3 categories based upon possible communication channels between 1. students and students, 2. students and faculty, and 3. students and staff.

A 7-point scale was used to rate each dimension with “1” being very poor and “7” being excellent. Higher scores indicated a more positive and supportive learning climate, and
lower scores indicated an environment that is potentially less desirable. The participants were also encouraged to provide written comments that would be helpful for a better understanding of learning climate.

The translation process involved forward and back-translations (23, 43) of the modified instrument for equivalence. MADH faculty members, one dentist and one dental hygienist performed forward translations into Japanese. A panel of three dental hygiene faculty members completed a copy of the translated questionnaire, and the results were evaluated in order to identify any errors or potential language difficulties. The Japanese version was then translated back to English. Both Japanese and Canadian faculty members were consulted to identify discrepancies, and adjustments were made for inconsistencies. Then both versions were pilot-tested on the graduating MADH and VCC 3rd year students of 2005 (n=87) for content validity and internal consistency reliability. The final refined version, Dental Hygiene Student Learning Climate Survey (DHS-LCS), was used in the present investigation.

Data collection

The instrument was implemented annually for four consecutive years with the 2\(^{nd}\) and 3\(^{rd}\) year students. This group was surveyed approximately 2 months before the end of their academic year. In 2005, only the 2\(^{nd}\) year students were surveyed. All surveys were anonymous. Institutional ethical approval was obtained from MADH and VCC as well as through the Ethics Board at the Faculty of Dentistry, University of British Columbia.

Intervention

The survey results were shared with the students, faculty and staff at the end of each academic year. Through discussions at meetings with students and faculty, interventions were designed to positively influence the learning environment. The effect of the
implemented interventions was evaluated through the subsequent surveys.

Data analysis

The internal consistency of the instrument was examined using Cronbach’s alpha, using SPSS Version 12.0J for Windows (SPSS Japan, Tokyo).

InStat version 3.05 for Windows, (GraphPad Software, La Jolla, CA) was used to analyze the quantitative data. Non parametric tests were used to compare differences between groups. P-values less than 0.01 were considered statistically significant.

Thematic and discrepancy analysis (44) was used to explore the text-based data from the open-ended question. The data was coded, categorized and organized into meaningful themes.
Results

The instrument showed adequate internal consistency (Cronbach’s coefficients ranging from 0.88 to 0.94). The response rate for the VCC group ranged from 43% to 55%, while the MADH response rate ranged from 65% to 97% for a mean response rate of 62%. A total of 402 surveys were returned over the years of its implementation.

The scores on the dimensions for the VCC group ranged from a low of 4.11 to a high of 6.55 (Table 2). The great majority of the dimensions were rated over 5 with only two items being rated between 4 and 5; these two dimensions included the physical environment and learning resources. The scores on the dimensions for the MADH students ranged from 3.29 to 5.33. The great majority of the dimensions were rated between 3 and 4. The highest scores in the dimensions related to ‘Student to student’ communication with that dimension being the only dimension receiving a score of 5 or higher. In both the VCC and the MADH responses, the ‘Student to student’ dimension was rated higher than the ‘Student to faculty’ or ‘Student to staff’ dimensions.

When the total group scores of all dimensions were compared, there were statistically significant differences (p< 0.001) between VCC and MADH responses (Table 2). The overall mean of the VCC group score was significantly higher that that of the MADH group in every year surveyed. In 2005, the scores of VCC students for all dimensions except for ‘Physical environment’ and ‘Student to student communication’ were significantly higher (p < 0.001) than those of MADH students. In 2006, ‘Student to student communication’ was the only dimension without significant differences in scores.

For the differences between the students as they progressed from year to year, the views of the VCC students did not change from their 2nd to 3rd years. For the 2nd year MADH students, scores for ‘Respect’ and ‘Rewards’ were the lowest, whereas the 3rd year students gave ‘Learning resources’ and ‘Student to faculty communications’ poor ratings (data not
Several recurrent themes were identified in the text-based analysis (Table 3). Although the similarities outweighed the differences in their comments, some variations did exist (Table 4). For instance, in ‘Communication’, the VCC students focused on the information flow with regard to the kind of communications that occurred. The MADH students focused on the amount of communication between faculty and students. The issue of some students receiving more information or more attention was common to both groups. Both groups requested more faculty; the VCC students directed attention to more faculty treatment planning, while the MADH students focused on faculty in the context of developing their clinical technical abilities. This data was used to help support the development of interventions.

A number of interventions were generated to improve the learning climate (Table 5). The VCC faculty worked with their administration to obtain more locker and classroom space for the students. As well negotiations occurred with the librarians to provide increased access to indexes and journals through internet options. The clinical faculty issues were also discussed and plans made to decrease the paper work that appeared to be affecting the treatment planning process and the clinical support available for students. At MADH, a college counseling service was established for the students. The MADH faculty worked with their administration to downsize the enrollment to improve faculty to student ratio.

In order to evaluate the effects of these interventions, results from the subsequent surveys were compared and analyzed. For both VCC and MADH students, the trend that developed following the first year of surveying was generally a positive one. Combined ratings of the 2nd and 3rd year VCC and MADH students showed significant improvements over time (Table 2). When the profiles of dimensions with low ratings in
2005 or 2006 were analyzed, the trend for improvements could be confirmed by the general shift to higher scores (Figures 1, 2).
Discussion

This study was undertaken to provide a better understanding of the learning climate in dental hygiene programmes and perhaps provide an instrument that could be used to help improve the learning climate in such programmes. We believe this study is unique in its focus on assessing the general learning environment in dental hygiene education including a longitudinal and international perspective.

The overall response rate and the respondents’ written comments in the survey suggest that many students were interested in expressing their views about their learning climate. They became engaged in discussions to help find solutions to the issues that were raised. The dialogue that was generated between faculty, students and staff may be the most valuable aspect of the survey instrument. The discussions went beyond individual courses and explored broader issues affecting their learning. Such discussions could, of course, be equally stimulated by other instruments as well. However, this study does suggest that a general instrument to explore the learning climate can be helpful in bringing about positive change. It supports the need to go beyond individual course evaluations as is so often the case in educational programmes. Discussions with faculty members revealed that the instrument was perceived as being non-threatening to them given that it had a broad focus. It may have resulted in increased willingness of faculty members to explore issues given the shared responsibility for the ratings.

In the present study, the mean total DHS-LCS score of Canadian students was significantly higher than that of Japanese students. There may be several reasons for this difference. Faculty to student ratio is thought to be one of the most significant factors. This was evident in students’ comments. The faculty to student ratio for VCC was on the average 1 to 5, whereas that for MADH was 1 to 28. Although both VCC and MADH students requested more faculty, it can be assumed that the VCC students received closer
attention from faculty members, thus contributing to the better communications.

A cross-cultural comparison study with dental students in Canada, Thailand, and Japan found that nearly three-quarters of the Canadian and Thai students were satisfied with the teaching faculty of their schools, while only a quarter of the Japanese students indicated satisfaction (45). Our study seems to suggest a similar trend with dental hygiene students. However it is challenging to determine the source of this difference; it may be a reflection of cultural influence but could also reflect other environmental factors.

In a previous study of the 2006 MADH and VCC students, a difference was found in perceptions of their profession (46). Canadian dental hygiene students demonstrated higher levels of motivation and expectation toward their profession when compared to Japanese students. Moreover, their level of explicit self-esteem was significantly higher than that of the Japanese students, and it was positively correlated with their expectations of the profession. Thus, in addition to aforementioned factors, differences in the professional environment surrounding dental hygiene may also affect students’ perceptions on their learning.

Students’ age or maturity may be another factor that could account for differences in their responses. The Canadian students were approximately 6 years older than the Japanese students of the same class year. Burnard et al.(47) studied nursing students’ self-esteem and showed that younger students had a higher perception of the quality of their relationship with their peers. Age may have affected their responses to other variables as well given that they may have different expectations of a learning environment. However, age was not a question asked on the survey so we were not able to explore this issue further.

As Wilson and Deane (36) suggest, asking about dimensions of learning rather than people may be a more effective way to gain constructive feedback about the educational
environment. It is important to gain students’ perspectives in a way that allows them to express their views about their overall experiences within a programme, and this is particularly true for professional programmes that are known for their stressful learning environments involving services provided to clients. There are no simple answers to the complex issue of a positive learning climate. However, we still need to tackle these issues. An instrument such as the one used in this study has potential to provide some valuable feedback to illuminate general dimensions of the learning environment. Shedding some light on such dimensions can help to bring about further discussions and student-centered interventions.

The interventions in our study appear to have contributed to the improvement of the learning environment in both organizations as assessed by the changes in the DHS-LCS scores, but the interventions are of course context specific. They need to be negotiated with students in their unique learning environments.

There are limitations in the present study. The response rate by the VCC students was lower than the MADH students; as well the size of the two classes was also different, ranging from 20 to 24 students in the case of VCC, and 58 to 73 students in the MADH group. It is, therefore, challenging to know if the VCC responses were reflective of the class as such or were more indicative of students whose views were more positive of their environment. Even the response rate of the MADH group declined over time; perhaps this is a reflection of the novelty of the survey wearing off over time. Another explanation may be related to possible decrease in faculty interest or commitment over time in introducing the study to students.

Use of any instruments beyond the samples with which they were initially tested presents considerable challenges (48, 49). The DHS-LCS instrument was also developed based in a North American context. Therefore, the validity and equivalence of the
Japanese version of the instrument should be further tested in terms of the cultural context. The articulation of dimensions also creates a structure for the dialogues that includes certain aspects but by its very nature excludes other discussions. What those other discussions may have been we can not say. However the range of student comments suggests that the current instrument provided them an opportunity to voice their opinions on a wide range of issues.

Although this study only focuses on a small number of dental hygiene students, the finding of the present study serve to provide some insights into the important aspects of learning climates as perceived by the students themselves. Students are the group affected the most by the educational environment, but oftentimes they feel they have the least amount of input for change (19). The invitation for students to join in this communication may convey the institution’s sincere interest in developing strategies that will help to increase students’ positive impressions of their dental hygiene learning experience.

Conclusion

With its limits, this study represents an attempt to understand students’ perceptions of their dental hygiene learning climate. The students identified dimensions for improvement in their learning climate, and the interventions arising from the dialogue surrounding the survey results appear to have had a positive influence on the learning climate. The instrument is helpful in identifying general student concerns in their learning environment and can be used to implement student-centered interventions to help support a healthier learning climate.

Acknowledgements
We are grateful for the participation of the students in this study.

Declaration of interest: The authors report no conflicts of interest related to this study.

References

Figure legends

Figure 1
Distribution of the DHS-LCS score of MADH students for ‘Respect’

Figure 2
Distribution of the DHS-LCS score of VCC students for ‘Learning resources’
Table 1. DHS-LCS dimensions, description, and examples of scale items

1. Physical environment

This includes the quality of space and privacy afforded to people, the accessibility of necessary supplies, and the equipment and supplies available for client care / simulations.

| Poor conditions: difficult to sustain quality care; difficult for learning | 1 2 3 4 5 6 7 | Excellent conditions: no physical barriers to the delivery of quality client care; effective learning spaces |

2. Learning resources

Numbers, quality, and availability of faculty and staff as well as equipment.

| Very few or not available faculty and staff; few and poor resources | 1 2 3 4 5 6 7 | Many very helpful and available staff and faculty; equipment in good working order and sufficient in number for learners |

3. Encouragement to learn

The extent to which students feel encouraged to have ideas and learn new ways of doing things. This would not include experimentation that may put individual or community clients at risk.

| Little encouragement to learn; there are low expectations of people in terms of new abilities | 1 2 3 4 5 6 7 | People are encouraged to learn at all times and to extend themselves and their knowledge |

4. Communications

This refers to the pathways of information flow from student to student, student to staff, and student to faculty member. How open and free is the flow of information? Do people express ideas and opinions easily and openly?

(This section was modified to include various types of communication among the groups of students, staff)
and faculty.]

Information is not openly shared: 1 2 3 4 5 6 7 Students are openly willing to sometimes discouraged from seeking assistance or information Students are openly willing to pass information and provide assistance

5. Rewards

This includes students being verbally praised for their efforts, being given recognition for good work. This does not include grading but rather addresses positive verbal reinforcement and recognition of excellence in clinical and community performance.

Students are ignored but blamed first if things go wrong 1 2 3 4 5 6 7 Students are openly recognized for good work and rewarded for effort and learning

6. Value placed on ideas

The extent to which ideas, opinions and suggestions are sought out, encouraged and valued.

Ideas are not sought or valued 1 2 3 4 5 6 7 Efforts are made to get students to participate in meetings; ideas are valued and acted upon

7. Practical help available

The extent to which students, staff and faculty members help each other, offer support.

People don't help each other: 1 2 3 4 5 6 7 People are very willing and helpful; pleasure is taken in the success of others

People don't help each other: there is an unwillingness to pool or share resources

8. Warmth and support
This refers to the “friendliness” of others, the amount of trust between students, support staff and faculty members, and the amount of support given to students with a problem.

Little warmth and support; this is a cold, isolating place 1 2 3 4 5 6 7 Warm and friendly place; people enjoy being here and working together

9. Standards
The emphasis is placed upon quality in all things; people set challenging standards for themselves and each other.

Low standards and quality; no one really seems to care 1 2 3 4 5 6 7 High standards; everyone cares; people reinforce standards

10. Respect
This refers to the atmosphere in which learning takes place, whether students feel respected as human beings.

Little respect; hierarchical distinctions are constantly made and reinforced 1 2 3 4 5 6 7 Students are well respected for their knowledge and abilities
Table 2.

Summary of group mean scores related to dimensions measured in the DHS-LCS

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>2005 VCC (n=12; 55%)</th>
<th>2005 MADH (n=68; 97%)</th>
<th>2006 VCC (n=18; 43%)</th>
<th>2006 MADH (n=90; 69%)</th>
<th>2007 VCC (n=19; 46%)</th>
<th>2007 MADH (n=85; 66%)</th>
<th>2008 VCC (n=29; 54%)</th>
<th>2008 MADH (n=81; 65%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.75</td>
<td>4.28</td>
<td>4.83</td>
<td>3.93*</td>
<td>5.84*</td>
<td>4.60</td>
<td>5.48*</td>
<td>4.86</td>
</tr>
<tr>
<td>Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>resources</td>
<td>4.58*</td>
<td>3.43</td>
<td>4.11</td>
<td>3.52*</td>
<td>5.21*</td>
<td>3.96</td>
<td>5.21*</td>
<td>3.52</td>
</tr>
<tr>
<td>Encouragement to learn</td>
<td>5.92*</td>
<td>3.94</td>
<td>5.11</td>
<td>3.98*</td>
<td>5.89*</td>
<td>4.15</td>
<td>6.55*</td>
<td>4.19</td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student to student</td>
<td>5.58</td>
<td>5.33</td>
<td>5.67</td>
<td>5.28</td>
<td>6.32*</td>
<td>5.16</td>
<td>6.10*</td>
<td>5.65</td>
</tr>
<tr>
<td>Student to staff</td>
<td>5.25*</td>
<td>3.42</td>
<td>5.17*</td>
<td>3.42</td>
<td>5.89*</td>
<td>4.15</td>
<td>6.03*</td>
<td>4.15</td>
</tr>
<tr>
<td>Student to faculty</td>
<td>5.36*</td>
<td>3.56</td>
<td>4.83*</td>
<td>3.38</td>
<td>5.68*</td>
<td>4.07</td>
<td>5.93*</td>
<td>3.82</td>
</tr>
<tr>
<td>Rewards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value placed on ideas</td>
<td>5.17*</td>
<td>3.50</td>
<td>5.35*</td>
<td>3.60</td>
<td>5.37*</td>
<td>3.84</td>
<td>6.00*</td>
<td>4.02</td>
</tr>
<tr>
<td>Practical help</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>available</td>
<td>5.83*</td>
<td>3.76</td>
<td>5.67*</td>
<td>3.89</td>
<td>5.95*</td>
<td>4.31</td>
<td>6.28*</td>
<td>4.31</td>
</tr>
<tr>
<td>Warmth and support</td>
<td>5.67*</td>
<td>3.90</td>
<td>5.89*</td>
<td>3.84</td>
<td>5.89*</td>
<td>4.41</td>
<td>6.17*</td>
<td>4.20</td>
</tr>
<tr>
<td>Standards</td>
<td>6.00*</td>
<td>3.97</td>
<td>6.22*</td>
<td>3.86</td>
<td>6.47*</td>
<td>4.27</td>
<td>6.48*</td>
<td>4.31</td>
</tr>
<tr>
<td>Respect</td>
<td>5.42</td>
<td>3.29*</td>
<td>5.50*</td>
<td>3.67</td>
<td>5.63*</td>
<td>3.85</td>
<td>6.10*</td>
<td>4.13</td>
</tr>
<tr>
<td>Total</td>
<td>64.95*</td>
<td>45.96</td>
<td>63.46*</td>
<td>45.83</td>
<td>69.82*</td>
<td>50.77†</td>
<td>72.64†</td>
<td>51.11†</td>
</tr>
</tbody>
</table>

*Statistically significantly different from MADH score in the same year (P < 0.001, Mann Whitney U test) †Statistically significantly different from 2005, 2006 (P < 0.01, Kruskal-Wallis test with Dunn Post test).
Table 3. Common themes from individual comments.

- Communication between students, and faculty / staff
- Faculty performance / calibration
- Number of faculty / accessibility of faculty
- Physical environment / equipment
- Student workload
- Organization (organization of clinical time / evaluations in general)
Table 4. Examples of different / unique views identified from individual comments.

<table>
<thead>
<tr>
<th>Category</th>
<th>VCC</th>
<th>MADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>focused on the information flow with regard to the kind of communications</td>
<td>focused on the amount of communication between faculty and students</td>
</tr>
</tbody>
</table>
| Faculty accessibility| pertained specifically to treatment plans and clinical assistance | |.
<table>
<thead>
<tr>
<th>Programme</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• improvement of intranet to facilitate communication</td>
</tr>
<tr>
<td></td>
<td>• reorganizing clinical faculty members for clinics</td>
</tr>
<tr>
<td></td>
<td>• additional calibration exercises for clinical faculty</td>
</tr>
<tr>
<td></td>
<td>• improvement of physical working space conditions</td>
</tr>
<tr>
<td></td>
<td>• development of a plan of action for creating self-directed learners</td>
</tr>
<tr>
<td>MADH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• establishment of the student support center (placement of school counselors)</td>
</tr>
<tr>
<td></td>
<td>• downsizing the student enrollment</td>
</tr>
<tr>
<td></td>
<td>• increased time for clinical skill training and utilization of clinical dental hygienists as part-time instructors</td>
</tr>
<tr>
<td></td>
<td>• introduction of active learning strategies (ex. formal debate)</td>
</tr>
<tr>
<td></td>
<td>• improvement of the library, guidance for other resources available (ex. dental school library)</td>
</tr>
<tr>
<td></td>
<td>• increased opportunities for learning support</td>
</tr>
</tbody>
</table>