<table>
<thead>
<tr>
<th>タイトル</th>
<th>アンダーボディブランケットによる温風式加温システムの術中低体温予防効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>作者</td>
<td>富永亜紀 小板橋俊哉 大内貴志 伴理香 印南靖志 梅村直治</td>
</tr>
<tr>
<td>ジャーナル</td>
<td>臨床麻酔 31巻9号 Page1455-1459(2007.09)</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10130/265</td>
</tr>
<tr>
<td>特記事項</td>
<td>この資料は「富永亜紀 小板橋俊哉 大内貴志 伴理香 印南靖志 梅村直治 アンダーボディブランケットによる温風式加温システムの術中低体温予防効果 臨床麻酔 31巻9号 Page1455-1459(2007.09)」にて出版された論文の著者版原稿である</td>
</tr>
</tbody>
</table>
アンダーボディプランケットによる温風式加温システムの術中低体温予防効果

東京歯科大学市川総合病院 麻酔科

富永亜紀、小板橋俊哉、大内貴志、伴理香、
印南靖志、梅村直治

キーワード：低体温、温風式加温装置、
アンダーボディプランケット
要旨

患者の身体の下面に敷くアンダーボディプランケットを用いた温風式加温の有効性を検討した。対象は上腹部開腹手術を予定した20名とした。アンダーボディプランケットによる温風式加温群（試験群）と、これを用いない群（対照群）の2群に分け、全身麻酔導入後の中枢温（食道温、膀胱温）を15分ごとに120分後まで測定した。

対照群では導入後に食道温、膀胱温ともに有意に低下した。試験群では食道温、膀胱温ともに有意な低下を認めなかった。また、両群間には食道温、膀胱温ともに有意差を認めなかった。以上よりアンダーボディプランケットを用いた温風式加温システムにより、導入後の再分布性低体温を予防可能であることが判明した。
低体温は全身麻酔に伴う合併症として頻度が高い。しかし、低体温が患者に与える影響について、かつてはほとんど知られていなかったため、術中の体温低下を予防する方法は十分に検討されてこなかった。近年、低体温が術中出血量の増加1)・2)だけでなく、術後創感染3)、心筋虚血4)・5)などの短期予後に影響することが報告されるようになり、種々の加温システムが開発されてきた6)・9)。

現在、低体温を予防する方法として、温風式加温装置が最も効果的と考えられており広く臨床で用いられている10)。そのプランケットは上肢または下肢を身体の上面から覆う形式であるが、患者の身体の下面に敷く新しい形式のプランケット（以下アンダーボディプランケット）が開発されたことから、今回これを用い麻酔導入後の体温に及ぼす影響について検討した。

対象と方法

- 3 -
ASAリスク分類１および２の上腹部開腹手術を予定した患者２０名を対象とした。患者にはあらかじめ本研究の主旨を説明し、同意を得た。対象患者が手術室入室時に、無作為にアンダーボディプランネットによる温風式加温システム群（以下試験群）10症例と温風加温装置を用いない群（以下対照群）10症例に分けた。除外症例は、血液凝固障害などにより硬膜外麻酔が施行できないものとした。

麻酔は両群とも同様の方法で行った。前投薬としてラニチジン50mgを入室1時間前に静脈注射し、入室後胸椎７から１１の間より硬膜外カテーテルを挿入した。導入はプロボフォール１-１.5mg/kg、フェンタニル50-100µgで行い、ベクロニウム0.8-1.2mg/kgを用いて気管挿管を行った。維持は空気（0.7-1.0L/min）、酸素（2.0L/min）、セボフルラン（0.8-2.0%）で行った。硬膜外麻酔は導入時に0.5-1.0%ロピバカイン5-15mLを投与し、必要に応じて0.5-1.0%ロピバカイン
2-5mLを追加投与した。

加温は両群とも導入直後に開始した。対照群では循環式温水マット（MEDI-THERM®, Gaymar Industries）を患者背面に敷き38°Cに設定して使用した。試験群では循環式温水マットによる加温は行わず、患者背部の下面にアンダーボディプランケット（Model 635 Full Access Blanket, Arizant Healthcare）を敷き、43°Cに設定した温風式加温装置（Bair Hugger®: Arizant Healthcare）を用いて加温した（Fig.1）。術中の輸液は両群ともすべて41°Cに加温（Ranger®, Arizant Healthcare）して用いた。用いた輸液製剤は液状液と低分子デキストラン製剤のみとし、アミノ酸製剤は用いなかった。なお、手術室の室温は導入直後より24°Cとして、一定に維持した。

体温は中枢温として食道温と膀胱温を測定し、導入直後の体温を基準として、以後15分ごとに最大120分後まで、体温変化を記録
した。

結果は平均値 ± 標準偏差で示した。患者背景の検定は Student’s t-test で行った。各群の体温変化の検定には分散分析と Bonferroni/Dunn を、両群間の比較には分散分析と Scheffe を用い、P < 0.05 を有意とした。

結果

Table に両群の患者背景を示した。両群間に有意差を認めなかった。

Fig.2、3 に両群の食道温、膀胱温変化をそれぞれ示した。食道温は、対照群では 45 分以降全ての時点で導入時と比較していずれも有意に低下した。膀胱温は、105、120 分の時点で導入時と比較していずれも有意に低下した。一方、試験群では食道温、膀胱温ともに有意な体温変化を認めなかった。食道温の低下は対照群、試験群でそれぞれ最大で 0.9 ± 0.4、0.2 ± 0.3 と両群間に有意差が見られた。
膀胱温の低下も対照群、試験群でそれぞれ最大で0.7 0.6, 0.1 0.7と両群間に有意差が見られた。

考察

温風式加温装置による加温が、循環式温水マットなどの他の加温方法よりも体温保持に優れていることが報告されている。しかし、温風式加温装置を用いても導入後約1時間の中枢温の1～1.5℃の低下を抑制することは困難とされている11) 12)。しかし、アンダーボディプランケットを用いて温風式加温を施行した本研究の結果は、導入後1時間の中枢温の低下をほぼ完全に抑制した。このことは上述の記述を覆すものであり、体温管理上、本システムは極めて有用であると考えられる。

導入後の中枢温低下の原因として、麻醉薬の末梢血管拡張作用により、熱が中枢から末梢へ再分布する機序が考えられている。した
がって、体表の加温を主な作用とする温風式加温が中枢温低下を予防する上で効果的であり、広い体表面積を覆うブランケットを用いれば加温効率がさらに上昇することが予想される。現在、広く臨床で使用されている身体の上面を覆って用いるブランケット（アッパーボディブランケット）は、加温される体表の領域が狭いことが問題点であった。一方、アッパーボディブランケットは体幹から下肢までの広い範囲を覆うことができることに加え、膨張したブランケットが体表に密着しやすいことから、アッパーボディブランケットよりも優れた加温効果を発揮したと考える。

今回の研究では循環式温水マットによる加温群を対照としており、アッパーボディブランケットとの比較は行っていない。アッパーボディブランケットがアッパーボディブランケットよりも優れた低体温予防効果を有しているか否かに関しては、今後の検討を要する。また、温風式加温装置の温度設定は 43℃
であり、循環式温水マットの温度設定である38℃と異なっていることが結果に影響を及ぼした可能性も否定できない。循環式温水マットの設定温度は低温熱傷を防止する観点から38℃が標準的であるが、温風式加温装置の温度設定は32, 38, 43℃から選択可能であり、今回はこの中から最も高い43℃を選択した。

体表の加温が低体温防止上、重要であるが、この温度設定は加温媒体として用いる水と空気の物理的相違、およびマットとプランケットの形状の違いに基づくものと考えられる。すなわち、アンダーボディプランケットでは、身体背面への送風よりもむしろ体表へ密着するようにプランケットが膨張することから、温水マットで懸念される背面の低温熱傷の心配がないため43℃の設定が可能になっている。一方、温水マットでは加温された水が身体背面を灌流し、背面以外には逃げ道がないことから設定温度の上昇が低温熱傷につながる危険性を有する。したがって、両者を43℃
に統一することは不可能であるが、38℃に設定することは可能であり、今後の検討課題と考える。実際に、導入120分後以降には試験群で中枢温が上昇し、逆にクーリングを要求する症例も見られたことから、術中の設定温度の変更も含めた使用ガイドラインの制定が望まれる。

本稿の要旨は、日本麻酔科学会第54回学術集会（2007年、札幌市）で発表した。

4) Frank SM, Beattie C, Christopherson R, et al:
Unintentional hypothermia is associated with postoperative myocardial ischemia. Anesthesiology 1993; 78: 468-76

Smith CE, Gerdes E, Sweda S, et al: Warming intravenous fluids reduces perioperative hypothermia in women undergoing ambulatory
gynecological surgery. Anesth Analg 1998; 87: 37-41

8) 佐藤順一 , 山薫道明 , 並木昭義 ,
他：乾熱式血液輸液加温装置レンジャー™ (Ranger™)の性能評価 .
臨床麻酔 2005 ; 29 : 1201-3

9) 神谷和男 , 吉田仁 , 高木麻里 , 他:
開腹術におけるアミノ酸製剤投与による低体温予防効果 . 麻酔
2006 ; 55 : 1216-21

comparative study of three warming interventions to
determine the most effective in maintaining perioperative

11) 長谷川健司 , 根岸千晴 , 中川文利 ,
他：カーボンファイバーガ温システム (Smart Care®) は温風式加
Efficacy of an “Underbody” Type Forced-air Warming Blanket for the Prevention of Intraoperative Hypothermia during Open Abdominal Surgery

Aki Tominaga, Toshiya Koitabashi, Takashi Ouchi, Rika Ban, Yasushi Innami and Naoji Umemura

Department of Anesthesiology, Ichikawa General Hospital, Tokyo Dental College

Recently, a new type of forced-air warming blanket has been developed which is used by placing it under the body of the patients. In this investigation, we evaluated the efficacy of this blanket for preventing hypothermia during upper abdominal surgery. Twenty patients undergoing elective upper abdominal
surgery were enrolled and were randomized into two groups; (1) the forced-air warming (43°C) group using underbody blanket (underbody blanket group), and (2) circulating water mattress (38°C) group (control group). Esophageal temperature decreased significantly throughout surgery in the control group. However, esophageal temperature did not change significantly throughout surgery in the underbody blanket group. Maximum decrease of the esophageal temperature was 0.2 ± 0.3°C and 0.9 ± 0.4°C in the underbody blanket and control groups, respectively. Therefore, we concluded that forced-air warming system using the underbody blanket was effective to prevent hypothermia during upper abdominal surgery.

Key words: Hypothermia, Forced-air warming system, Underbody type blanket
Fig. 1 "Underbody" type warming blanket and Bair Hugger™ Forced-Air Warming System
<table>
<thead>
<tr>
<th>Control Group</th>
<th>Under-body Blanket Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr/o)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
</tr>
<tr>
<td>Ropivacaine Dose</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2 Esophageal temperature changes following the anesthetic induction in both groups
Fig. 3 Bladder temperature changes following the anesthetic induction in both groups