Title
The effect of surface pore size on the differentiation of rat bone marrow cells: morphological observations and expression of bone related protein mRNA

Author(s)
Nashimoto, M; Matsuzaka, K; Yoshinari, M; Shimono, M; Inoue, T

Journal
Bulletin of Tokyo Dental College, 45(4): 201-211

URL
http://hdl.handle.net/10130/277
THE EFFECT OF SURFACE PORE SIZE ON THE DIFFERENTIATION OF RAT BONE MARROW CELLS: MORPHOLOGICAL OBSERVATIONS AND EXPRESSION OF BONE RELATED PROTEIN mRNA

MASANORI NASHIMOTO, KENICHI MATSUZAKA*, MASAO YOSHINARI**, MASAKI SHIMONO*** and TAKASHI INOUE*

Department of Pathology, Tokyo Dental College,
1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
* Oral Health Science Center, Department of Clinical Pathophysiology,
Tokyo Dental College,
1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
** Oral Health Science Center, Department of Dental Material Science,
Tokyo Dental College,
1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
*** Oral Health Science Center, Department of Pathology, Tokyo Dental College,
1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan

Received 20 October, 2004/Accepted for Publication 20 January, 2005

Abstract

The purpose of this study was to investigate the behavior of rat bone marrow cells (RBM) growing on surfaces with different pore sizes. RBM behavior on Millipore filters (MF-Millipore membrane filter) made from cellulose mixed esters with 5 different pore surfaces (0.45 μm, 1.2 μm, 3.0 μm, 5.0 μm and 8.0 μm) were compared in terms of morphological changes on the different pore sizes. Furthermore, the expressions of osteopontin and osteocalcin mRNAs were investigated. On the 1.2 μm and 3.0 μm pore surfaces, RBM attached to the substrate well, but cells on the 5.0 μm and 8.0 μm pore surfaces invaded deeply into the pores. Higher levels of both osteopontin and osteocalcin mRNA expression were always observed in cells cultured on the 1.2 μm filter. These results suggest that the 1.2 μm Millipore filter pore size is the most suitable for inducing RBM to differentiate into an osteoblastic phenotype among these surfaces and is probably related to production of the ECM but not to the phenomenon of cell spreading.

Key words: Pore surface—Osteopontin—Osteocalcin—RT-PCR—Surface geometry

INTRODUCTION

It is well known that osseointegration is the key to successful dental implantation and is in part regulated by the implant surface geometry. Many previous studies have compared the influence of the surface geometry of materials on cell behavior and the
characteristics of dental implants using in vivo and/or in vitro model systems to simulate the implant surface in situ. The characteristics of the surface geometry influence cell attachment, orientation, and subsequent tissue integration in vivo. Much information on the interactions between cells and materials has been gained from in vitro studies using various approaches to examine the influence of surface characteristics on cell behavior; such research helps in understanding events that occur in vivo. Osteoblast proliferation, differentiation, and maturation around dental implants have all been widely studied both in vivo and in vitro, and it has been clarified that titanium implant surfaces modulate the phenotypic expression and metabolism of osteoblast cells. However, the data reported on the biological effects of surface properties on osteoblast proliferation and differentiation are rather contradictory and do not clarify the comparative efficacies of surfaces with different properties. This information is necessary because differentiation toward an osteoblastic phenotype is a multistep process regulated by several factors, including hormones, growth factors and mechanical stresses which affect cellular shape.

The study of mRNA expression is one of the most powerful tools for studying weak cell signals, such as physical or physicochemical stimulation by cell-substrate interactions. For instance, type 1 collagen is known to be an essential protein for pre-osteoblasts to anchor to a substrate, and osteopontin and osteocalcin are known as bone-related proteins produced by differentiated osteoblasts. It is also known that blasting a smooth surface with Al₂O₃ particles of 25μm, 75μm and 250μm produces surfaces with roughness values of 1.16μm to 1.20μm, 1.43μm and 1.94μm to 2.20μm, respectively, and these roughness values are suitable for osseointegration. Chemical etching creates pits of specific dimensions and shape, and these surfaces also function in the same way as the blasting surfaces. However, the effects of the pore size are not well understood.

The purpose of this study was to investigate the effects of surfaces of Millipore filters (MF-Millipore™ membrane filter; Millipore Limited, Tokyo, Japan) with 5 different surface pore sizes on the differentiation of rat bone marrow cells (RBM). In order to examine this, the cell lengths of the attached cells were measured on substrates of different pore sizes by scanning electron microscopy. Further, the expression of osteopontin and osteocalcin mRNAs was analyzed by reverse transcription-polymerase chain reaction (RT-PCR).

MATERIALS AND METHODS

The substrates used in this study were prepared with MF, which is made from cellulose mixed ester, with 5 different pore sizes; 0.45 μm, 1.2 μm, 3.0 μm, 5.0 μm and 8.0 μm.

1. Preparation of RBM cells

Primary RBM cells were isolated from the femurs of Wistar rats weighing approximately 100 g/bw, according to the method described by Maniatopoulos et al. Briefly, the proximal and distal ends of each femur were resected, and RBM were obtained from the diaphysis by flushing with the culture medium described below, using a stainless steel #26 hypodermic needle mounted on a 3ml syringe. The cells were collected and centrifuged, and the pellets obtained were placed in culture dishes. These cells have been shown to exhibit an osteoblastic phenotype in vitro, including expression of alkaline phosphatase activity and synthesis of osteopontin and osteocalcin.

2. Culture conditions

Cells were cultured in α-MEM (minimum essential medium, Gibco Laboratories, Carlsbad, CA, USA) with 10% fetal calf serum supplemented with 40μg/ml penicillin G and 10,000μg/ml streptomycin sulfate. For RBM osteoblast-like cell culture, 10⁻⁸ M dexamethasone and 10mM β-glycerophosphate were added to the medium. Cultures were incubated in 5% (v/v) carbon dioxide (CO₂)
at 37°C for five days until the cells were confluent, with changes of medium every 48 hours. Cells were observed every day by phase-contrast microscopy. When the cells became confluent, they were detached from the flasks using 0.1% trypsin. The cell number in each suspension was determined and adjusted to 2×10⁴ cells/ml in the same culture medium. Approximately 5×10⁴ cells in 5 ml of medium were seeded on the surface of each MF in a culture dish. After 12 hours of incubation at 37°C, the cells were washed with phosphate-buffered saline (PBS) to remove any unattached cells such as hemopoietic cells.

3. Scanning electron microscopic (SEM) evaluation

After 3 or 6 days of culture, cells cultured on MFs of each pore size were fixed with 2.5% glutaraldehyde in 0.1 mM sodium cacodylate buffer, pH 7.2. They were then washed with PBS, dehydrated in graded ethanol, and critical point-dried from liquid CO₂ using a critical point-drier. Samples were sputter coated with Au-Pd for 2 min and then viewed using a HITACHI 8000 SEM.

4. Cell length

Both the long and short lengths of cells cultured on each size of MF at each time period were measured as viewed by SEM using an ultra scale and were compared by 1-way analysis of variance (ANOVA).

5. Quantitative RT-PCR using the Light Cycler™

Total RNA was extracted using the Isogen reagent (Nippon Gene, Tokyo, Japan), according to the manufacturer’s instructions. Briefly, cultured osteoblast-like cells were homogenized in an Isogen/chloroform solution at 4°C. Supernatants were obtained by centrifugation at 12,000×g for 20 min at 4°C. The precipitates were obtained by decantation and washed with 75% ethanol. The RNA pellets were dissolved in RNAase free water and stored at −20°C until used. Using the extracted RNA as a template, reverse transcription reactions were carried out with an RT-PCR kit (RNA PCR kit ver2.1, Takara Biomedicals, Tokyo, Japan) to synthesize cDNA. PCR was then carried out using osteocalcin and osteopontin primers. Primer sequences from 5’ to 3’ were: osteopontin (forward; CTC GGA GGA GAA GGC GCA TTA, reverse; CCA TCG TCA TCG TCG TCG TCA) and osteocalcin (forward; GGT GCA AAG CCC AGC GAC TCT, reverse; GGA AGC CAA TGT GGT CCG CTA). The housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a control; its primer sequences from 5’ to 3’ were, forward; TGA ACG GGA AGC TCA CTG G, and reverse; TCC ACC ACC CTG TTG CTG TA. Thirty five reaction cycles were used for all of these primers.

To measure mRNA levels, a quantitative RT-PCR assay was conducted using a Light Cycler™ (Roch Diagnostics, Tokyo, Japan) with the double-stranded DNA dye SYBR Green I. The primers used for assays with the Light Cycler™ were the same as those described above for ordinary RT-PCR. Quantification was performed by comparing the mRNA levels obtained with standardized samples of GAPDH. The PCR conditions used in the Light Cycler™ were 40 cycles (95°C 10 sec, 60°C 5 sec and 72°C 12 sec). Melting curve analysis and agarose gel electrophoresis of PCR products were also performed after the PCR amplification to confirm the absence of the primer dimer in the PCR products.

RESULTS

1. Morphological observations of cells cultured on Millipore filters

At 3 days, the cells were characterized by polymorphous spread shapes without any microprocesses on any size of filter (Fig. 1a, 2a, 3a, 4a and 5a). However, cells cultured on 0.45μm filters were well spread, but cells cultured on the other pore sizes were elongated and attached to the substrates by cell processes.

At 6 days, cells cultured on the 0.45μm filters were much more spread than at 3 days
large pores (Fig. 4b, 5b) and had some small processes anchored to the substrate. Some cells cultured on 8.0 μm filters exhibited a small nodule-like appearance (Fig. 5c). Microvilli were not seen on any of the cells cultured on MFs of any pore size, and no
but was not different from that of cells cultured on 8.0 μm filters. The average cell length cultured on 8.0 μm filters at 6 days tended to be longer than that of cells cultured on 3.0 μm and 5.0 μm filters

spindle-shaped cells were seen.

The average cell length cultured on 1.2 μm filters at 3 days tended to be longer than that of cells cultured on 3.0 μm and 5.0 μm filters.
on the other pore sizes. On the other hand, the average cell length cultured on 1.2 \(\mu m \) filters at 6 days was tended to be shorter than that of cells cultured on the other pore sizes.

2. Cell length

The long axis lengths of cells at 3 days were 81.3 ± 15.3 on 0.45 \(\mu m \), 64.9 ± 20.8 on 1.2 \(\mu m \), 51.0 ± 17.0 on 3.0 \(\mu m \), 47.8 ± 13.0 on 5.0 \(\mu m \) and 57.7 ± 16.0 on 8.0 \(\mu m \) filters. The long axes of cells cultured on 0.45 \(\mu m \) filters at 3 days were significantly longer than cells cultured on the other pore sizes \((p<0.01)\). The long axes of cells cultured on 1.2 \(\mu m \) filters at 3 days were significantly longer than cells cultured on 3.0 \(\mu m \) \((p<0.05)\) and on 5.0 \(\mu m \) \((p<0.01)\) filters but were not significantly different compared to cells cultured on 8.0 \(\mu m \) MF.

The short axes of cells cultured on 0.45 \(\mu m \) filters for 3 days were significantly longer than cells cultured on the other pore-sized MF \((p<0.01)\). The short axes of cells cultured on 1.2 \(\mu m \) at 3 days were significantly longer than cells cultured on 5.0 \(\mu m \) \((p<0.05)\) MF but not significantly different compared to cells cultured on 3.0 \(\mu m \) and 8.0 \(\mu m \) MF.

The long axis lengths of cells at 6 days were 127.9 ± 27.5 on 0.45 \(\mu m \), 47.0 ± 14.5 on 1.2 \(\mu m \), 68.6 ± 22.4 on 3.0 \(\mu m \), 65.8 ± 20.0 on 5.0 \(\mu m \) and 74.4 ± 20.8 on 8.0 \(\mu m \) filters. The short axes of cells cultured on 0.45 \(\mu m \) filters at 3 days were significantly longer than cells cultured on the other pore sizes \((p<0.01)\). The short axes of cells cultured on 1.2 \(\mu m \) at 3 days were significantly longer than cells cultured on 5.0 \(\mu m \) filters \((p<0.05)\) but were not significantly different compared to cells cultured on 3.0 \(\mu m \) or 8.0 \(\mu m \) filters (Fig. 6b).

The long axis lengths of cells at 6 days were 44.7 ± 10.4 on 0.45 \(\mu m \), 36.8 ± 16.1 on 1.2 \(\mu m \), 29.6 ± 12.4 on 3.0 \(\mu m \), 27.7 ± 9.8 on 5.0 \(\mu m \) and 30.24 ± 17.0 on 8.0 \(\mu m \) filters. The short axes of cells cultured on 0.45 \(\mu m \) filters at 3 days were significantly longer than cells cultured on the other pore sizes \((p<0.01)\). The short axes of cells cultured on 1.2 \(\mu m \) at 3 days were significantly longer than cells cultured on 5.0 \(\mu m \) filters \((p<0.05)\) but were not significantly different compared to cells cultured on 3.0 \(\mu m \) or 8.0 \(\mu m \) filters (Fig. 6b).

The long axis lengths of cells at 6 days were 127.9 ± 27.5 on 0.45 \(\mu m \), 47.0 ± 14.5 on 1.2 \(\mu m \), 68.6 ± 22.4 on 3.0 \(\mu m \), 65.8 ± 20.0 on 5.0 \(\mu m \) and 74.4 ± 20.8 on 8.0 \(\mu m \) filters. The short axes of cells cultured on 0.45 \(\mu m \) filters at 6 days were significantly longer than cells cultured on the other pore sizes \((p<0.01)\). The long axes of cells cultured on 1.2 \(\mu m \) filters at 6 days were significantly shorter than cells cultured on 8.0 \(\mu m \) filters \((p<0.01)\). The long axes of cells cultured on 1.2 \(\mu m \) filters at 6 days were significantly shorter than cells cultured on 8.0 \(\mu m \) filters (Fig. 6b).
cultured on the other pore sizes (p<0.01) (Fig. 7a).

The short axis lengths of cells at 6 days were 65.1 ± 20.5 on 0.45 μm, 25.4 ± 10.0 on 1.2 μm, 33.4 ± 12.1 on 3.0 μm, 33.6 ± 10.3 on 5.0 μm and 36.2 ± 10.9 on 8.0 μm filters. The short axes of cells cultured on 0.45 μm filters at 6 days were significantly longer than cells cultured on the other pore sizes (p<0.01). The short axes of cells cultured on 1.2 μm filters at 6 days were significantly shorter than cells cultured on 5.0 μm (p<0.05) or 8.0 μm (p<0.01) filters but were not significantly different compared to cells cultured on 3.0 μm filters.

b: The short axes of cells cultured on 0.45 μm filters for 6 days were significantly longer than cells on the other pore-sized MF (p<0.01). The short axes of cells cultured on 1.2 μm filters for 7 days were significantly shorter than cells cultured on the other pore-sized MF (p<0.01). The short axes of cells cultured on 1.2 μm filters for 7 days were significantly shorter than cells cultured on 5.0 μm (p<0.05) and 8.0 μm (p<0.01) filters but were not significantly different compared to cells cultured on 3.0 μm filters.

3. Expression of osteopontin and osteocalcin mRNA

Expression levels of osteopontin mRNA at 3 days seemed to be greater in cells cultured on 1.2 μm and 3.0 μm filters than in cultured on 0.45 μm, 8.0 μm or 5.0 μm filters (Fig. 8a). The expression level of osteopontin mRNA at 6 days in cells cultured on the 1.2 μm surface was still the greatest, and the levels in cells cultured on 0.45 μm, 5.0 μm and 8.0 μm filters were greater than those of cells cultured on 3.0 μm filters (Fig. 8b).

The expression levels of osteocalcin mRNA at 3 days also seemed to be larger in cells cultured on the 1.2 μm and 3.0 μm filters than in those cultured on 0.45 μm, 5.0 μm and 8.0 μm filters (Fig. 9a). The expression level of osteocalcin mRNA at 6 days in cells cultured on the 1.2 μm surface was still the greatest, and the levels in cells cultured on 0.45 μm, 5.0 μm or 8.0 μm filters were greater than in cells cultured on the 3.0 μm filter (Fig. 9b).

Higher levels of both osteopontin and osteocalcin mRNA expression were always observed in cells cultured on the 1.2 μm filter.
Fig. 8 Levels of expression of osteopontin mRNA (Results are typical of three independent experiments)
a: Expression levels of osteopontin mRNA at 3 days seemed to be greater in cells cultured on 1.2 μm or 3.0 μm MF than in cells cultured on 0.45 μm, 8.0 μm or 5.0 μm MF.
b: The expression level of osteopontin mRNA at 6 days in cells cultured on the 1.2 μm surface was still the greatest, and the levels in cells cultured on 0.45 μm, 5.0 μm or 8.0 μm MF were greater than those in cells cultured on the 3.0 μm MF.

Fig. 9 Levels of expression of osteocalcin mRNA (Results are typical of three independent experiments)
a: Expression levels of osteocalcin mRNA at 3 days also seemed to be greater in cells cultured on 1.2 μm or 3.0 μm MF than in cells cultured on 0.45 μm, 5.0 μm or 8.0 μm MF.
b: The expression level of osteocalcin mRNA at 7 days in cells cultured on the 1.2 μm surface was still the greatest, and the levels in cells cultured on 0.45 μm, 5.0 μm or 8.0 μm MF were greater than those in cells cultured on the 3.0 μm MF or controls.

However, the expression levels of both osteopontin and osteocalcin mRNA in cells cultured on the 3μm filters contrasted with those in cells cultured on 0.45 μm, 5.0 μm and 8.0 μm filters at 3 and 6 days.

DISCUSSION
Implant surface geometry is considered to be an important factor for the osseointegration of osteoblast-like cells into bone tissue or bone marrow, because rough surfaces can
change cell behavior and differentiation, and many studies have emphasized the importance of surface characteristics in this process. Martin et al.,\(^\text{30}\) assessed the proliferation and differentiation of osteoblastic cells and reported that both the regularity and the roughness of the surface geometry influenced cell differentiation and calcification and that matrix formation and collagen synthesis were significantly elevated in cells grown on rough implant surfaces compared to cells on smooth surfaces. Shiigai et al.,\(^\text{30}\) suggested that 1.2 μm is the most appropriate substrate for accelerating the collagen synthesis function of fibroblasts, but they did not comment about even smaller sizes of MF. In the present study, we added 0.45 μm MF and investigated the influence of 5 substrates with different pore sizes.

It is known that cells change shape over time depending on the surface geometry and that cells spread well with many microprocesses on a culture dish. The cells cultured on the MFs were also spread, but no microprocesses were observed. MFs have irregular shapes which have gaps or pores of different sizes where there is an area of contact for cytoplasmic extensions but only a few areas of contact of microprocess attachment. Shiigai et al.,\(^\text{30}\) reported that an extracellular matrix (ECM), which is more than 100 nm wide and contains fibronectin and integrin, might be created between the wall of an MF and an L-929 fibroblast. Several studies have suggested that differentiation toward a differentiated osteoblast correlates with an increase in alkaline phosphatase activity, bone related protein and ECM production.\(^\text{19,20}\) Owen et al.,\(^\text{23}\) reported that type 1 collagen, fibronectin, vitronectin and tenasin are among the components of the ECM produced by differentiated osteoblasts, and Postiglione et al.,\(^\text{25}\) demonstrated that the ECM was easily produced, depending on the type of surface. Rough surfaces induced higher levels of ECM synthesis and organization than smooth surfaces, proving to be optimal for ECM production by osteoblast-like cells. Salter et al.,\(^\text{26}\) demonstrated that integrins, which link components of the ECM with actin filaments in the cytoplasm of bone cells, function as mechanoreceptors and lead cells to become differentiated bone cells.

Cells cultured on 1.2 μm or 3.0 μm filters contact the substrate and probably produce ECM much more readily than do cells cultured on 5.0 μm or 8.0 μm filters. Because the construction of 1.2 μm and 3.0 μm filters is more complicated than that of 5.0 μm or 8.0 μm filters, it is easier for RBM to attach to the substrate. In contrast, the cell bodies invaded deep into the pores of 5.0 μm and 8.0 μm filters, where the construction was simpler and not much ECM was found between the cells and the substrate.\(^\text{30}\)

Lumbikanonda and Sammons\(^\text{19}\) (2001) reported that cells span over the surface, creating spaces or gaps underneath. Such results imply that cells spread relatively more slowly on smooth titanium than on total plasma spraying (TPS) surfaces. However, on a smooth titanium surface, the cells eventually formed very close contacts with the surface, adapting to the underlying topography. This contrasts with the observations of Bowers and coworkers,\(^\text{39}\) who reported that significantly higher numbers of cells attached to irregular, sandblasted surfaces than to regular ones. In our study, the results of the 0.45 μm filter surfaces were similar to smooth titanium surface and 1.2 μm and 3.0 μm filters were probably similar to the blasting surface. The cells on 1.2 μm and 3.0 μm filters attached to the substrate of the MF with ECM instead of spreading, and the cells cultured on the 5.0 μm and 8.0 μm pore size MF invaded the pores and did not spread. However, after 6 days of culture, cells cultured on 5.0 μm or 8.0 μm filters (with large pores) probably start to produce ECM on the wall of the MFs, and the expression of osteopontin and osteocalcin, which are also important for osteoblast-like cell anchoring, overtakes that of cells cultured on filters with smaller pore sizes. Furthermore, cells cultured on a 0.45 μm filter exceed the other MF groups after 6 days culture in terms of the degree of production of ECM and expression of bone-related protein mRNA.
These results suggest that the expression of bone-related protein mRNA depends on the surface geometry and is related to production of the ECM but not to morphological changes such as the phenomenon of cell spreading with microprocesses.

Taken together, the results suggest that the 1.2 µm MF is the most appropriate substrate for RBM to differentiate into osteoblasts and promotes the expression of bone related protein mRNA.

ACKNOWLEDGEMENTS

The author would like to express great gratitude to Mrs. Y. Motoyoshi for her technical assistance. This investigation was supported in part by Japanese Ministry of Education, Culture, Sports, Science and Technology (No. 14207093) and Oral Health Science Center Grant (No.TDC-HRC5A08).

REFERENCES

Reprint requests to:
Dr. Takashi Inoue
Oral Health Science Center,
Department of Clinical Pathophysiology,
Tokyo Dental College,
1-2-2 Masago, Mihama-ku,
Chiba 261-8502, Japan
Tel: +81-43-270-3673
Fax: +81-43-270-3583
E-mail: inoue@tdc.ac.jp