Extracellular ATP both inhibits and facilitates calcium channel currents in acutely dissociated rat nucleus tractus solitarius

Author(s)
Endoh, T

Journal
Bulletin of Tokyo Dental College, 45(1): 59-63

URL
http://hdl.handle.net/10130/293
EXTRACELLULAR ATP BOTH INHIBITS AND FACILITATES CALCIUM CHANNEL CURRENTS IN ACUTELY DISSOCIATED RAT NUCLEUS TRACTUS SOLITARIUS

TAKAYUKI ENDOH

Department of Physiology, Tokyo Dental College,
1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan

Received 4 February, 2004/Accepted for Publication 1 March, 2004

Abstract

The postsynaptic actions of exogenously applied adenosine 5′-triphosphate (ATP) were investigated in nucleus tractus solitarius (NTS) of the rat. Whole cell patch-clamp recordings were used to examine the regulation of voltage-dependent Ca2+ channels (VDCCs) currents (IC\textsubscript{Ca}) by ATP in freshly dissociated NTS. Application of ATP inhibited IC\textsubscript{Ca} from -905 pA to -741 pA. In addition to this inhibition, application of ATP facilitated IC\textsubscript{Ca} from -941 pA to -1,094 pA in other neurons. The data presented here demonstrate for the first time that ATP has both inhibitory and facilitative effects on IC\textsubscript{Ca} in NTS. It can be considered that ATP acts as a neurotransmitter in the NTS by having multiple regulatory effects on VDCCs.

Key words: Nucleus tractus solitarius—Adenosine 5′-triphosphate—Nucleotide receptor—Purinergic receptor—Voltage dependent calcium channel

INTRODUCTION

The nucleus tractus solitarius (NTS) plays a major role in the regulation of cardiovascular, respiratory, gustatory, hepatic and swallowing functions4,17,19. This nucleus receives primary afferent input from a wide variety of peripheral organs and tissues and is essential in the integration of autonomic nervous system functions. In accordance with the numerous integrative functions mediated by the NTS, over 30 neurotransmitter/neuromodulators have been found in both cell bodies and terminals within the NTS19.

Extracellular adenosine 5′-triphosphate (ATP) is known to act as a neurotransmitter in the central and peripheral nervous systems5,21,28. It is also one of the many neurotransmitters thought to play a functionally important role in the NTS.

Voltage-dependent Ca2+ channels (VDCCs) serve as crucial mediators of membrane excitability and Ca2+-dependent functions such as neurotransmitter release, enzyme activity and
gene expression. The modulation of VDCCs is believed to be an important means of regulating Ca\(^{2+}\) entry and thus to have a direct influence on many Ca\(^{2+}\)-dependent processes.

Several electrophysiological studies have indicated that extracellular ATP inhibits VDCC currents (I\(_{\text{Ca}}\)) in chromaffin cells\(^{14}\), in frog sympathetic ganglion\(^9\), and in hamster submandibular ganglion\(^2\). In contrast, it has been demonstrated that extracellular ATP facilitates I\(_{\text{Ca}}\) in hippocampal neurons\(^3\). In NTS, however, the effect of extracellular ATP on neuronal VDCCs has not yet been clarified. Thus, the purpose of the present work was to examine the effects of ATP on I\(_{\text{Ca}}\) in NTS.

MATERIALS AND METHODS

Experiments were conducted according to international guidelines on the use of animals for experimentation. Young Wistar rats (7–18 days old) were decapitated, and their brains were quickly removed and submerged in ice-cold artificial cerebrospinal fluid (aCSF) saturated with 95% O\(_2\) and 5% CO\(_2\) of the following composition (in mM): NaCl 126, NaHCO\(_3\) 26.2, NaH\(_2\)PO\(_4\) 1, KCl 3, MgSO\(_4\) 1.5, CaCl\(_2\) 1.5, and glucose 30; pH 7.4. Thin transverse slices from brainstems, 400\(\mu\)m in thickness, were prepared by a tissue slicer (DTK-1000; Dosaka EM Co., Ltd., Kyoto). After being sectioned, 3–5 slices obtained from a single brain were transferred to a holding chamber and stored in oxygenated aCSF at room temperature for at least 40 min before use. Then, slices were transferred to a conical tube containing gently bubbled aCSF at 36°C to which 1.8 U/ml dispase (grade I; 0.75 ml/slice) was added. After 60 min incubation, slices were rinsed with enzyme-free aCSF. Under a dissecting microscope, the NTS region was micropunched and placed on poly-l-lysine-coated coverslip (Fig. 1A). The cells were then dissociated by trituration using progressively smaller diameter pipettes and allowed to settle on a coverslip for 20 min.

Voltage-clamp recordings were conducted using the whole-cell configuration of the patch-clamp technique\(^{15}\). Fabricated recording pipettes (2–3 M\(\Omega\)) were filled with an internal solution of the following composition (in mM): 100 CsCl, 1 MgCl\(_2\), 10 HEPES, 10 BAPTA, 3.6 MgATP, 14 Tris-phosphocreatine (CP), 0.1 GTP, and 50 U/ml creatine phosphokinase (CPK). The pH was adjusted to 7.2 with CsOH. The inclusion of CP and CPK effectively reduced the “rundown” of I\(_{\text{Ca}}\). After the formation of a giga seal, in order to record I\(_{\text{Ca}}\), the external solution was replaced from Krebs solution to a solution containing the following (in mM): 67 choline-Cl, 100 tetraethylammonium chloride, 5.3 KCl, 5 CaCl\(_2\), and 10 HEPES. The pH was adjusted to 7.4.
with Tris base. Command voltage protocols were generated with a computer software pCLAMP version 8 (Axon Instruments, Union City, CA, U.S.A.) and transformed to an analogue signal using a DigiData 1200 interface (Axon Instruments, Union City, CA, U.S.A.). The command pulses were applied to cells through an L/M-EPC7 amplifier (HEKA Elektronik, Lambrecht, Germany). The currents were recorded with the amplifier and a computer software pCLAMP 8 acquisition system.

RESULTS

The properties of VDCCs in NTS using current-voltage relationships have been demonstrated24). NTS has several types of VDCCs, which are full activated at a test potential = 0 mV from a holding potential = −80 mV. Therefore, in this study, it can be considered that full activation of
\(\text{ICa} \) was obtained by applying a test pulse from a holding potential = −80 mV to a test potential = 0 mV (Fig. 1B and C). An example of extracellular ATP-induced inhibition of \(\text{ICa} \) is shown in Fig. 1B. Application of 100 µM ATP inhibited \(\text{ICa} \) from −905 pA to −741 pA (18.1% inhibition) in this neuron. In addition to inhibiting \(\text{ICa} \), extracellular ATP-induced facilitation of \(\text{ICa} \) could be observed in a different neuron. An example of ATP-induced facilitation of \(\text{ICa} \) is shown in Fig. 1C. Application of 100 µM ATP facilitated \(\text{ICa} \) from −941 pA to −1,094 pA (16.2% facilitation) in this neuron.

The modulating manner, i.e., inhibition or facilitation, did not depend on the experimental conditions. It was impossible to determine the modulating manner of the ionic current before agonist application.

DISCUSSION

In this study, it was demonstrated that extracellular ATP inhibited and facilitated \(\text{ICa} \) in NTS.

The actions of ATP are mediated by purinoceptors that are present on many neurons. These purinoceptors are classified into two major subtypes, P1 and P2, which are preferentially activated by adenosine and ATP, respectively. P2 purinoceptors have been categorized into two major groups, P2X and P2Y, based on their pharmacological properties as well as their molecular structure. P2X are ligand-gated ion channels, while P2Y are G-protein-coupled receptors. The P2X purinoceptor family comprises seven cloned receptors: P2X1–7. The P2Y purinoceptor family comprises eight cloned receptors: P2Y1, P2Y2, P2Y3, P2Y4, P2Y6, P2Y11, P2Y12, and P2Y14. In addition, the localization and pharmacological profiles of the subtypes of the P2X and P2Y family have also been reported. A study to clarify the pharmacological characterization of the purinoceptors on NTS neurons is now progress in our department.

Additionally, ATP is rapidly hydrolysed by ecto-nucleotidases to ADP, AMP, and adenosine. Adenosine, the final hydrolysed metabolite of ATP, is another strong neuromodulator that activate P1 purinoceptors. It has been reported that several different types of VDCCs exist in NTS. From the functional point of view, VDCCs have been classed into “high” and “low” threshold on the basis of the voltage range at which they are activated. Low-threshold VDCCs have also become known as T-type, which serve as prolong the duration of the \(\text{Ca}^{2+} \)-dependent spike burst and of the generation of rhythmic firing. On the other hand, high-threshold VDCCs can be grouped into various classes according to their sensitivity to VDCCs blockers and the fact that they have different roles. It is well established that these activities result from the expression of a family of related VDCC molecules that exist as multisubunit complexes. For example, neurotransmitter secretion seems to be preferentially coupled to one or more of these VDCC types under
different circumstances. In our department, several studies suggest that many neurotransmitters modulate distinct types of VDCCs. For example, opioid inhibits L, N, and P/Q-type VDCCs. CGRP facilitates L- and N-type VDCCs. VIP both inhibits and facilitates L- and N-type VDCCs, respectively. It will be important in future experiments to determine which types of VDCC contribute to the ATP-induced modulation in NTS neurons.

In conclusion, the activation of purinoceptors inhibits and facilitates VDCCs in NTS. These dual effects can be explained as follows: Reduction of the Ca\(^{2+}\) influx through VDCCs might inhibit the Ca\(^{2+}\)-activated K\(^{+}\) currents responsible for post-spike hyperpolarization (AHP\(_{\text{slow}}\)), thereby increasing neuronal excitability. In contrast, entry of Ca\(^{2+}\) through VDCCs opens a class of small-conductance Ca\(^{2+}\)-activated K\(^{+}\) channels (SK channels); these induce a prolonged AHP\(_{\text{slow}}\) and contribute to the accommodation of spike discharge frequency during sustained depolarization.

In combination with previous observations, the widespread distribution of P2Y and P2X purinoceptors in NTS and the present demonstration of the purinoceptor’s modulation of VDCCs, provide mounting evidence for the likely role of purinergic neurotransmission in NTS and central autonomic regulation. Therefore, the purinoceptors’ pathway must be investigated in a further study.

ACKNOWLEDGEMENT

The author would like to thank Prof. Takashi Suzuki for his supervision of this study.

REFERENCES

13) Hamill, O.P., Marty, A., Neher, E., Sakmann, B.

Reprint requests to:
Dr. Takayuki Endoh
Department of Physiology,
Tokyo Dental College,
1-2-2 Masago, Mihama-ku,
Chiba 261-8502, Japan