<table>
<thead>
<tr>
<th>Title</th>
<th>Correlation between facial patterns and function of the masticatory muscles in girls and women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakakawaji, K; Kodachi, K; Sakamoto, T; Harazaki, M; Isshiki, Y</td>
</tr>
<tr>
<td>Journal</td>
<td>Bulletin of Tokyo Dental College, 43(2): 51-59</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10130/318</td>
</tr>
</tbody>
</table>
Original Article

CORRELATION BETWEEN FACIAL PATTERNS AND FUNCTION OF THE MASTICATORY MUSCLES IN GIRLS AND WOMEN

KENJI NAKAKAWAJI, KENJI KODACHI, TERUO SAKAMOTO, MORIHIRO HARAZAKI and YASUSHIGE ISSHIKI

Department of Orthodontics, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8302, Japan

Received 25 January, 2002/Accepted for Publication 6 March, 2002

Abstract

The relationship between maxillo-facial patterns and function of the masticatory muscles was evaluated using electromyography, in 16 women with functional normal occlusion and 16 girls with chronological normal occlusion half of them had the dolico facial pattern and the others had the brachyo facial pattern by Ricketts analysis. For the electromyography, loads of 1, 2, 3, 4, and 5kg were applied to the mandible, and muscular activity waves were obtained from the masseter muscle and the anterior belly of the temporal muscle during isometric contraction by surface electrode induction. The median frequency value (MFV) in a frequency curve obtained by high-speed Fourier transform of the electromyographic waves was set to the evaluation index. The MFV at each applied load was higher in the adult brachyo facial pattern group than in the adult dolico facial pattern group in both the masseter muscle and the anterior belly of the temporal muscle, whereas the differences in the MFV were slight in the child group at a 5% significance level. The child group showed approximately half the incidence of significant correlation coefficients in comparison with the adult group and a large standard deviation without marked differences in the facial patterns due to their individual differences in growth with a 5% significant level. The adult brachyo facial pattern group showed a high regression coefficient of the MFV in the masseter muscle according to the increase in the amount of the applied load. Although differences in the cooperative contraction patterns similar to those in the adult group were observed in both the child dolico and brachyo facial pattern groups, no marked significant differences were observed in the child group, who had large individual differences due to their immature growth.

Key words: Electromyography analysis—Median frequency—Facial pattern—Function of the masticatory

INTRODUCTION

Understanding the relationship between maxillo-facial patterns and masticatory function is an important issue in orthodontic treatment. Evaluation of the relationship between morphology and function by quantitatively analyzing the correlation between the
two factors will be significantly useful for adequate diagnosis and treatment evaluation.

Electromyography is an appropriate method for evaluating the function of the masticatory muscles, because the system can be observed without surgical invasion. Frequency analysis of electromyographic waves is a quantitative method for evaluating function that also permits qualitative evaluation of the discharge of the muscles. This analytical method has been frequently reported in the field of kinetics, and the application of this method to the quantitative evaluation of the masticatory muscle has also been reported due to the recent development of electrical apparatus with an important measurement method. The relationships between the frequency analysis of electromyograms, maxillofacial morphology and function, and clinical applications have not yet been established.

Ricketts et al. classified facial features into brachyo, mesio, and dolico facial patterns. These patterns, including factors of growth, have been applied for the prediction of growth in each facial pattern and for the establishment of treatment goals. Furthermore, because facial feature can be easily classified into short, intermediate, and long types by these classification items, they have been generally used as the index of skeletal malocclusion and facial morphology.

In this study, the degree of correlation between the facial patterns and the function of the masticatory muscles was quantitatively analyzed using the cephalometric analysis by Ricketts et al. and frequency analysis of the electromyograms of the masticatory muscles.

SUBJECTS AND METHODS

1. Subjects

As the adult group, 16 women with functional normal occlusion and a mean age of 23.7 years (20–38 years), 8 with brachyo facial pattern and 8 with dolico facial pattern, were selected from the volunteer staff members and students at Tokyo Dental College by cephalometric analysis.

As the child group, 16 girls with chronologically normal occlusion, a mean age of 9.8 years (7–14 years), and a dental age of IIIA–IVA, including of 8 with brachyo facial pattern and 8 with dolico facial pattern, were selected from the patients who consulted the Department of Orthodontics at Tokyo Dental College Chiba Hospital. The measurements in the adult and child groups were evaluated. Informed consent from the subjects was obtained in advance.

2. Record and analysis of electromyograms

To record electromyograms, 8 channel polygraph system (S1516 BioAmp. & Recticorder W1608G, Nihon Kohden Co., Tokyo) was used. Electromyograms in the bilateral masseter muscles and the anterior belly of the temporal muscle were measured by the induction method with 4 channel simultaneous surface electrodes. With regard to the surface electrodes, two electrodes were fixed with resin to maintain a constant distance between the two electrodes. To standardize the application areas of the electrodes, they were placed along the central muscular belly of each muscle according to the method of Sakamoto. To establish isometric contraction, a mouthpiece with a shaft for the traction by heavy weights was placed in the subject’s oral cavity according to the method of Kodachi, and load was applied to the mandible via the mouthpiece. Loads of 1, 2, 3, 4, and 5 kg were applied for 20 seconds. To eliminate the influence of muscular fatigue, subjects rested between each application of the load. The subjects sat on a dental chair with good posture and their limbs relaxed, and the measurement was taken keeping the intermaxillary distance constant. The electromyograms obtained were recorded by a data recorder (XR-510, Teac Co.) as illustrated in Fig. 1.

Power frequency analysis of the recorded original electromyographic waves was performed under the conditions of a 3 second sampling time using an electromyogram analysis apparatus (ATAC 450, Nihon Kohden Co.) to obtain the median frequency value.
CORRELATION BETWEEN FACIAL PATTERNS AND FUNCTION

53

(53

\text{CORRELATION BETWEEN FACIAL PATTERNS AND FUNCTION}

\text{frequency values in the bilateral masticatory muscles were added and were set to the MFV.}

3. Morphological analysis by lateral Roentgenographic cephalograms

According to the analysis by Ricketts \textit{et al.}16, 5 facial pattern items were measured, and classified the subjects were into brachyo and dolico facial patterns.

RESULTS

1. Changes in the MFV according to the increase in the amount of the applied load in the adults and children with dolico and brachyo facial pattern

Measurement data of 5 facial pattern items and the classification are summarized in Table 1. Mean values of the MFV according to the increase in the amount of the applied load in the dolico and brachyo facial pattern groups of adults and children are summarized in Table 2. In the adult group, the MFV was high in both the temporal and masseter muscles showing no differences in the dolico facial pattern group, whereas it was low showing no differences in the brachyo facial pattern group. Muscular activity shifted toward lower frequency bands according to the increase in the amount of the applied load. In the child group, the MFV was high in the temporal muscle in the dolico facial pattern group, and it was low in the temporal muscle in the brachyo facial pattern group similarly to the pattern in the adult group. The MFV in the masseter muscle was high showing no differences between the dolico and brachyo facial pattern groups in the children groups. Furthermore, the MFV in the child group decreased according to the increase in the amount of the applied load similarly to the pattern in the adult group as shown in Figs. 2, 3, 4.

2. Relationship between the amount of the applied load and the correlation coefficient (r) or regression coefficient (\(a\)) in the MFV

In the adult brachyo facial pattern group,
Table 1 Ricketts analysis in the adult and child groups

<table>
<thead>
<tr>
<th></th>
<th>Facial axis R1</th>
<th>Facial depth R2</th>
<th>Mandibular plane R3</th>
<th>Lower facial height R4</th>
<th>Mandibular arc R5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult n = 8</td>
<td>Mean 77.8***</td>
<td>80.8**</td>
<td>38.4**</td>
<td>57.1**</td>
<td>23.9*</td>
</tr>
<tr>
<td>S.D. 2.0</td>
<td>3.8</td>
<td>6.1</td>
<td>5.2</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Brachyo n = 8</td>
<td>Mean 89.6*</td>
<td>91.8*</td>
<td>19.7**</td>
<td>43.6**</td>
<td>33.9**</td>
</tr>
<tr>
<td>S.D. 5.8</td>
<td>2.2</td>
<td>8.0</td>
<td>5.2</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Child</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolico n = 8</td>
<td>Mean 80.5**</td>
<td>83.9*</td>
<td>35*</td>
<td>54.5*</td>
<td>23.9</td>
</tr>
<tr>
<td>S.D. 2.5</td>
<td>4.3</td>
<td>2.5</td>
<td>2.5</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Brachyo n = 8</td>
<td>Mean 88.8*</td>
<td>89.5*</td>
<td>21.6**</td>
<td>44.4*</td>
<td>32.9**</td>
</tr>
<tr>
<td>S.D. 3.7</td>
<td>3.0</td>
<td>1.9</td>
<td>1.8</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Mesio at age 9†</td>
<td>Norm 86.0</td>
<td>86.0</td>
<td>30.0</td>
<td>49.0</td>
<td>25.0</td>
</tr>
<tr>
<td>S.D. 3.0</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
</tr>
</tbody>
</table>

* Degree exceeding 1 S.D. is shown
† Japanese standard values by Nezu et al. 12

Table 2 Mean values of the MFV according to the increase in the amount of the applied load in the dolico and brachyo facial pattern groups in adults and children

<table>
<thead>
<tr>
<th></th>
<th>Temporal muscle</th>
<th>Masseter muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1kg</td>
<td>2kg</td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolico n = 8</td>
<td>Mean 350.4</td>
<td>342.8</td>
</tr>
<tr>
<td>S.D. 41.0</td>
<td>41.5</td>
<td>40.5</td>
</tr>
<tr>
<td>Brachyo n = 8</td>
<td>Mean 303.3</td>
<td>297.5</td>
</tr>
<tr>
<td>S.D. 35.0</td>
<td>38.2</td>
<td>34.4</td>
</tr>
<tr>
<td>Child</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolico n = 8</td>
<td>Mean 334.3</td>
<td>330.5</td>
</tr>
<tr>
<td>S.D. 29.2</td>
<td>23.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Brachyo n = 8</td>
<td>Mean 316.9</td>
<td>308.0</td>
</tr>
<tr>
<td>S.D. 23.1</td>
<td>21.5</td>
<td>21.9</td>
</tr>
</tbody>
</table>

(Hz)
a significant correlation was observed in 6 of 8 cases in the temporal muscle and in 7 of 8 cases in the masseter muscle. In the adult dolico facial pattern group, a significant correlation was observed in 6 of 8 cases in the temporal muscle and in 6 of 8 cases in the masseter muscle. In the child brachycephalic facial pattern group, a significant correlation was observed in 4 of 8 cases in the temporal muscle and in 4 of 8 cases in the masseter muscle, showing approximately half the incidence of significant correlation.

The correlation coefficient (r) between the changes in the MFV and the increase in the amount of the applied load in each subject was higher in the adult group than in the child group in both the temporal and masseter muscles and in both the dolico and brachycephalic facial pattern groups. The

Fig. 2 Classification by the temporal and masseter muscles. Changes in the MFV according to the increase in the amount of the applied load in the dolico and brachycephalic facial pattern adult and child groups.

Fig. 3 Classification by the adult dolico and brachycephalic facial pattern groups. Changes in the MFV according to the increase in the amount of the applied load in the temporal and masseter muscles.

Fig. 4 Classification by the child dolico and brachycephalic facial pattern groups. Changes in the MFV according to the increase in the amount of the applied load in the temporal and masseter muscles.
child group had a large standard deviation (Table 3).

In the adult group, with regard to the comparisons between the temporal and masseter muscles, \(\alpha \) was significantly higher in the masseter muscle in the dolico facial pattern group, at a 1% significance level. Although it was high in the brachyo facial pattern group, no significant differences between the temporal and masseter muscles were observed. With regard to the comparisons between the dolico and brachyo facial pattern groups, \(\alpha \) was significantly higher in the masseter muscle in the dolico facial pattern group, at a 5% significance level. No significant difference was observed in the temporal muscle.

In the child group, with regard to the comparisons between the temporal and masseter muscles, \(\alpha \) was significantly higher in the masseter muscle in the dolico facial pattern
CORRELATION BETWEEN FACIAL PATTERNS AND FUNCTION

Table 4 Regression coefficients of the MFV according to the increase in the amount of the applied load and t-tests for significant differences

<table>
<thead>
<tr>
<th></th>
<th>Temporal m.</th>
<th>Masseter m.</th>
<th>Temporal m.</th>
<th>Masseter m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolico Adult</td>
<td>Mean -7.04</td>
<td>-11.34 *</td>
<td>-6.75</td>
<td>-8.46</td>
</tr>
<tr>
<td></td>
<td>S.D. 2.22</td>
<td>2.37</td>
<td>1.85</td>
<td>2.89</td>
</tr>
<tr>
<td>Brachyo Adult</td>
<td>Mean -8.93</td>
<td>-13.26 *</td>
<td>-7.80</td>
<td>-8.61</td>
</tr>
<tr>
<td></td>
<td>S.D. 7.12</td>
<td>8.70</td>
<td>4.35</td>
<td>4.56</td>
</tr>
<tr>
<td>Child</td>
<td>Mean -8.93</td>
<td>-13.26 *</td>
<td>-7.80</td>
<td>-8.61</td>
</tr>
<tr>
<td></td>
<td>S.D. 7.12</td>
<td>8.70</td>
<td>4.35</td>
<td>4.56</td>
</tr>
</tbody>
</table>

Comparisons between the temporal and masseter muscles in each group
Comparisons between the dolico and brachyo facial type groups in the same muscle

Dolico: * Significant differences were observed at a 1% significance level
Brachyo: △ Significant differences were observed at a 5% significance level

DISCUSSION

The subjects in the present study were limited to adult and child groups. This was because gender differences were observed in the relationship between facial height and biting force and women showed correlations, and because there have been reports that differences in the thickness of soft tissue between males and women influence frequency parameters\(^{30}\). With regard to the classification of facial pattern, because the purpose of this study was treatment for orthodontic patients and functional stability of occlusion, pattern classification of lateral profiles by lateral Roentgenographic cephalogram angular measurement by Ricketts et al.\(^{16}\) was used in this study without using the conventional classification into long and short facial types based on the facial height in patients with skeletal growth abnormalities.

For clinical examinations, surface electromyography is a reliable method generally used for the quantitative analysis of muscular function. This method, which was first used by Moyers\(^{11}\), was also used in this study. Biting force was used as an index of load in the report by Park\(^{14}\) in our department; however, considering that the subjects were young, load was applied to the mandible, and isometric contraction changing according to the increase in muscular tension was quantified. With regard to the quantitative analysis of electromyograms, electromyogram integral calculus values and Willson Turn Counter, which are indexes to show the degree of muscular tension and discharge\(^{65}\), have previously been used. The frequency analysis used in this study recorded the incidence of frequency bands accompanying muscular discharge which reflect the discharge of NMU and the differences in the function among each subjugated muscle were obtained by frequency analysis. Furthermore, it has been reported that the frequency analysis was appropriate
for clinical examinations in orthodontic treatment requiring a long-term observation due to its reproducibility of data in a report by Tamura. Medians were used in this study because there have been many reports that medians were a most useful single index representing the whole curve and that comparisons among groups were useful in clinical examinations.

With regard to the relationship between the MFV and muscular tension, Samejima and Kato reported that frequency bands shifted toward higher bands according to the increase in tension. Petrofsky and Lind observed no relationship between tension electromyograms and frequency distribution. In this study, similarly to the reports by Duxbury et al. and Palla and Ash, the MFV shifted toward the lower frequency bands according to the increase in the amount of the applied load in both the dolico and brachyo facial pattern groups. This result was thought to be influenced by muscular tension by Palla and Ash, muscular fatigue by Kroon et al., the number of participating NMU by Lindstöm et al., and the decrease in the conductive speed of action potentials by Tokunaga. It is possible to that larger NMUs were mobilized according to the increase in muscular tension and that the frequency distribution shifted toward lower frequency bands because the mobilized NMUs were synchronized in the lower bands.

Differences were observed between the dolico and brachyo facial pattern groups in both the temporal and masseter muscles, and the adult group showed a high correlation, whereas the child group showed a low correlation this was a clear difference. There has been a report that muscular tension was proportionate to integral calculus electromyograms under isometric contraction. The report studied adults, but there have been no previous reports studying children. Because the cranio-superior facial growth period is early and inferior facial growth is late, as morphologically confirmed, there is a possibility that the masticatory muscles in children are undeveloped and that their function is undifferentiated. Because the children in this study were 7–14 years old in the peak period of maxillo-oral growth, individual differences in the activity of the masticatory muscles were expected to be observed. Furthermore, in children, there is a possibility that an increase in the amount of the applied load was supported not only by the subject muscles, but also by other muscles unconsciously.

With regard to the value of α, differences were observed between the dolico and brachyo facial pattern adult groups, showing different cooperative contraction patterns in the masseter muscle, in which shifting toward lower frequency bands according to the increase in the amount of the applied load was marked in the masseter muscle in the dolico facial pattern group. This was thought to be due to the differences in the synchronization phenomena of the NMU by Buchthal and Handsen, and to the ratio of innervation by the muscles and components of kinetic NMU—tonic NMU by Moritani and Muro. With regard to the functional differences between the temporal and masseter muscles, it has been reported that recovery from muscular fatigue was faster in the temporal muscle and that the masseter muscle was more influenced by muscular fatigue. The differences between the dolico and brachyo facial pattern groups observed in the masseter muscle were thought to be caused by these complex factors.

In both the dolico and brachyo facial pattern groups, differences in the cooperative contraction patterns similar to those in the adult group were observed. In the child mas- seter muscle, no difference was observed between the dolico and brachyo facial pattern groups, showing a high MFV, which may be due to their immaturity. Since individual differences were marked, no clearly significant differences were observed.

ACKNOWLEDGEMENTS

I wish to thank Professor Hideharu Yamaguchi for his direction throughout this
study.

This paper is part of a thesis submitted in January 2002 by K. Nakakawaji to the graduate school of Tokyo Dental College.

REFERENCES

20) Tokunaga, T. (1989). Muscle fiber conduc-
tion velocity and frequency parameters of surface EMG during fatigue of the human mas-

Reprint requests to:
Dr. Kenji Nakakawaji
Department of Orthodontics,
Tokyo Dental College,
1-2-2 Masago, Mihama-ku,
Chiba 261-8502, Japan