<table>
<thead>
<tr>
<th>Title</th>
<th>Claudin rather than occludin is essential for differentiation in rat incisor odontoblasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hoshino, M; Hashimoto, S; Muramatsu, T; Matsuki, M; Ogiuchi, H; Shimono, M</td>
</tr>
<tr>
<td>Journal</td>
<td>Oral diseases, 14(7): 606-612</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10130/1090</td>
</tr>
<tr>
<td>Rights</td>
<td>The definitive version is available at www.blackwell-synergy.com</td>
</tr>
</tbody>
</table>
Claudin rather than occludin is essential for differentiation in rat incisor odontoblasts

M. Hoshino ¹, S. Hashimoto ²,³, T. Muramatsu ²,³*, M. Matsuki ³, H. Ogiuchi ¹, and M. Shimono ²,³

¹Department of Oral and Maxillofacial Surgery, Tokyo Women’s Medical University, School of Medicine, Tokyo, Japan
²Department of Pathology, Tokyo Dental College, Chiba, Japan
³Oral Health Science Center HRC7, Tokyo Dental College, Chiba, Japan

1) Short title: Tight junction-associated proteins between odontoblasts
2) Key words: Tight junction, odontoblast, occludin, claudin, ZO-1, ZO-2
3) The number of words in the abstract: 137
4) The number of the abstract and the text: 2475
5) The number of tables and figures: 4 figures
6) The number of cited references: 31
7) Date of submission: July 27, 2007
8) Date of revision: October 5, 2007

*Corresponding Author:
Takashi Muramatsu, DDS, PhD
Department of Pathology
Tokyo Dental College
1-2-2, Masago, Mihama-ku
Chiba, 261-8502 Japan
Phone: +81-43-270-3782; Fax: +81-43-270-3784
E-mail: tmuramat@tdc.ac.jp
ABSTRACT

Many morphological and developmental studies have demonstrated the characteristics of tight junctions (TJs) between odontoblasts. However, detailed localization of TJ-associated proteins in odontoblasts and their functions have not yet been clarified. To elucidate the relationship between the establishment of TJ structures and the differentiation of odontoblasts during early dentinogenesis, we studied the expression and localization of constituent proteins of TJs (claudin-1, occludin, ZO-1 and ZO-2) between odontoblasts in rat lower incisors using Western blotting, immunofluorescence and immuno-electron microscopy. When the expression of claudin-1 increases at the distal portion of mature odontoblasts, the TJs form complex networks of strands, and odontoblasts differentiated by developing distal membrane domains and by secreting specific molecules for mineralization. We conclude that the TJs of odontoblasts may play an important role about differentiation of odontoblast in rat lower incisors during early dentinogenesis.
INTRODUCTION

Tight junctions (TJs) are located at the most distal portions of lateral membranes between adjacent epithelial cells, and are thought to function as boundaries between apical and basolateral plasma membrane domains to create and maintain their cellular polarity (Rodriguez-Boulan and Nelson, 1989). TJs also function as a primary barrier against diffusion of solutes through the paracellular pathway (Gumbiner, 1987, 1993; Schneeberger and Lynch, 1992). TJs are mainly composed of transmembrane proteins (including claudin and occludin) and cytoplasmic proteins (such as ZO-1, ZO-2 and ZO-3) (Tsukita et al, 1999). Claudin is an integral membrane protein of TJ-strands that is a member of a multigene family consisting of more than 20 proteins (Tsukita et al, 2001). The permeability barrier functions of TJs depend on the combination and ratio of different claudins (Tsukita et al, 2001). Occludin is a constituent protein of TJ-strands that contributes to TJ barrier functions (Furuse et al, 1993; McCarthy et al, 1996; Hirase et al, 1997). ZO-1 is a key cytoplasmic protein assembled at TJs that binds to claudin and occludin as well as to the actin cytoskeleton (Itoh et al, 1997; Fanning et al, 1998) while ZO-2 is another cytoplasmic protein that can also bind to the actin cytoskeleton and can form independent complexes with ZO-1.

Dentinogenesis is a sequential process that involves the differentiation of odontoblasts from undifferentiated ectomesenchymal cells to the dental papilla, establishing their cellular polarity and their ability to secrete dentin matrix proteins that subsequently mineralize (Nanci, 2003). During dentinogenesis, odontoblasts possess TJs that constitute the junctional complex (JC) with adherens junctions and desmosome-like structures analogous to epithelial cells (Sasaki et al, 1982). Many morphological and developmental studies have demonstrated the characteristics of TJs between odontoblasts (Iguchi et al, 1984; Calle, 1985; Sasaki and Garant, 1996). Ultrastructural studies have shown that TJs can be observed as multiple focal fusions (Sasaki et al, 1982; Iguchi et
al, 1984). Furthermore, freeze-fracture studies have demonstrated strands of intramembrane particles at the most distal portions of odontoblasts (Sasaki et al, 1982; Iguchi et al, 1984; Calle, 1985; Arana-Chavez and Katchburian 1997, 1998). However, the relationship between expression and localization of TJ-associated proteins and differentiation processes of odontoblasts during dentinogenesis is still unclear.

The objective of this study was to investigate the expression and localization of TJ-associated proteins, including claudin-1, occludin, ZO-1 and ZO-2, between odontoblasts in rat lower incisors during early dentinogenesis.

MATERIALS & METHODS

Rat lower incisors were employed in this study to observe the complete sequence of early dentinogenesis and odontoblast differentiation in the same specimens. Based on the criteria of Takuma and Nagai (1971), we divided odontoblast differentiation into five stages, (a) differentiating papilla cell (PC), (b) pre-odontoblast (PO), (c) young-odontoblast (YO), (d) old-odontoblast (OO) and (e) short odontoblast (SO), as shown in Fig. 1A.

Animals & tissue preparations

Fifty adult male Sprague-Dawley rats, weighing 150-200 g each, were used in this study. The animals were deeply anesthetized with an intraperitoneal injection of sodium thiopental and were then sacrificed. This study was conducted in accordance with the Guidelines for the Treatment of Experimental Animals at the Tokyo Dental College.
Primary antibodies

Rabbit anti-occludin polyclonal antibody, rabbit anti-claudin-1 polyclonal antibody, rabbit anti-ZO-1 and ZO-2 polyclonal antibodies were all from Zymed Laboratories, Inc. (South San Francisco, CA, USA).

Western blotting analysis

For Western blotting analysis, dental pulp tissues including odontoblasts were obtained from lower incisors, homogenized at 4°C using a Teflon-glass homogenizer with a loose-fitting pestle, and total proteins were extracted. Fifty micrograms of total protein were separated on 7.5% ready gels (BIO RAD Laboratories, Hercules, CA, USA) at room temperature and were transferred to PVDF membranes and incubated overnight at 4°C with primary antibodies. The membranes were blotted at room temperature with horseradish peroxidase (HRP)-conjugated anti-rabbit IgG antibody (Sigma, St Louis, MO, USA) for 1 h and were visualized using ECL™ Western Blotting Detection Reagents (Amersham Biosciences UK, Ltd., Buckinghamshire, UK).

Immunofluorescence microscopy

For immunofluorescence, the lower incisors were extracted from rat mandibles and were embedded into 10% agarose gels and stored at 4°C. The extruded incisors were carefully cut at the apical side and were divided into two parts with agarose gel. The most apical part of each piece was embedded in O.C.T compound (Tissue-Tek® Sakura Finetechnical Co., Ltd., Tokyo, Japan) and was quickly frozen by liquid nitrogen, after that 8-µm frozen longitudinal sections were prepared. The frozen sections were rinsed in 0.01 M phosphate buffer saline (PBS) and were subsequently incubated for 10 min with 10% goat serum in PBS. The sections were then incubated with primary
antibodies (diluted 1:100) at room temperature for 2 h. After washing in PBS, the specimens were incubated with Alexa fluor® 488 anti-rabbit IgG antibody (1:75 dilution, Molecular probes, Inc., Eugene, OR, USA) in PBS at 4°C for 1 h. The specimens were observed and photographed using a conventional fluorescence microscope, Axioplan 2 (Carl Zeiss Jena GmbH, Jena, Germany).

Immuno-electron microscopy

For immuno-electron microscopy, the animals were sacrificed by perfusion with fixative solution containing 4% paraformaldehyde and 0.2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4). The extracted lower incisors were dissected into small pieces, dehydrated with graded ethanol and embedded in LR white resin (London Resin, Hampshire, UK) at 4°C with UV light. Ultrathin sections (90-95 nm in thickness) were prepared, and were immediately incubated in PGB (10% BSA, 0.01M PBS, 0.1 M glycine). They were then incubated at 37°C for 2 h with primary antibodies at a 1:50 dilution in PGB. After rinsing in PGB, sections were incubated at room temperature for 1 h with anti-rabbit gold colloidal particles diluted 1:75 in PGB. Finally, post-staining with 6% uranyl acetate and Reynold’s lead was performed. The specimens were examined and photographed using a transmission electron microscope (H-7100, HITACHI Co, Tokyo, Japan).

RESULTS

Western blotting analysis

Western blotting analysis revealed distinct single bands of claudin-1, occludin, ZO-1 and ZO-2, approximately at 22 kDa, 60 kDa, 220 kDa and 160 kDa, respectively, in the apical part of
the dental pulp (Fig. 1B)

Immunofluorescence microscopy

We observed odontoblasts in each stage of early differentiation, such as PC, PO and YO (Fig. 2A), according to Takuma and Nagai's classification (Fig. 1A). That classification is based on the cytological characteristics of odontoblasts in different stages of development and maturation.

Expression of TJ-associated proteins (claudin-1, occludin, ZO-1, and ZO-2) was clearly detected at most distal portions of odontoblasts corresponding to the junctional complexes (JC). However, expression patterns of these 4 proteins in differentiating odontoblasts were different (Fig. 2B).

Expression of claudin-1

Immunoreactivity for claudin-1 was relatively weak at most distal portion of odontoblasts in early stage of differentiation (Fig. 2Ba) and gradually increased its intensity as the differentiation of odontoblasts proceeded (Fig. 2Bb). Expression of claudin-1 was clearly detected at distal portions of odontoblasts corresponding to the distal JC (Fig. 2Bc), and formed network structures in advanced stage (Fig. 2Bd).

Expression of occludin

Immunolabeling for occludin was clearly observed at most distal site of odontoblasts in early stage of differentiation (Fig. 2Be). As the differentiation of odontoblasts proceed, immunoreactivity for occludin decreased (Fig. 2Bf), and eventually disappeared in advanced stage (Fig. 2Bg).
Expression of ZO-1

Positive immunoreaction for ZO-1 was strongly detected at most distal portion of odontoblasts in early stage (Fig. 2Bh), and did not change and could be clearly recognized as the differentiation of odontoblasts proceed (Fig. 2Bi, 2Bj), and formed network structures as observed in claudin-1 (Fig. 2Bk).

Expression of ZO-2

Immunoreactivity for ZO-2 was found at most distal portions of odontoblasts, although it was relatively weak in early stage (Fig. 2Bl). ZO-2 gradually increased in intensity of staining as the differentiation of odontoblasts proceeded (Fig. 2Bm), and became to be clearly detected at the distal portions of odontoblasts, corresponding to the distal JC in advanced stage (Fig. 2Bn). ZO-2 also formed network structures as shown in claudin-1 (Fig. 2Bo).

Immuno-electron microscopy

Ten nm colloidal gold particles indicating claudin-1, occludin, ZO-1 and ZO-2, were discernible by immuno-electron microscopy at the JC of odontoblasts (Fig. 3). Claudin-1 was localized at cell-to-cell contacts observed at most distal part of the JC which corresponded to TJs (Fig. 3A), while occludin and ZO-1 were diffusely distributed through the JC including both tight and adherens junctions (Fig. 3B, 3C), ZO-2 was also detected at cell-to-cell contacts localized at most distal portion of the JC, which might suggest their localization in TJs (Fig. 3D).

DISCUSSION
TJs are well-developed structures that are observed in odontoblasts as well as in epithelial cells (Sasaki et al, 1982; Iguchi et al, 1984; Calle, 1985). Freeze fracture replicas demonstrate that TJs between odontoblasts are observed as small maculae or fasciae occludens rather than belt-like zonulae (Sasaki et al, 1982; Iguchi et al, 1984; Arana-Chaves et al, 1997). It has been demonstrated that radial bundles of collagen fibers run through distal JC without interruption in the intercellular spaces between adjacent odontoblasts, and penetrate the collagen networks of the pre-dentin (Salomon et al, 1991; Bishop and Yoshida, 1992; Tabata et al, 1994, 1995). The structures of TJs in odontoblasts are different from those in epithelial cells, implying functional differences of TJs between epithelial cells and odontoblasts. Recently, TJ-associated proteins (claudin-1, occludin, ZO-1 and ZO-2) have been identified and are believed to reflect cell specific regulation and functional demands. However, the expression and localization of TJ-associated proteins in odontoblasts have not yet been characterized. Therefore, we investigated the expression and localization of claudin-1, occludin, ZO-1 and ZO-2, in odontoblast layers of rat lower incisors.

In the process of forming epithelial cell-to-cell adhesions, primordial spot-like junctions are formed at the tips of thin cellular protrusions radiating from adjacent cells (Takai and Nakanishi, 2003). ZO-1 assembles at these spot-like junctions and recruits other TJ-associated proteins, including claudin and occludin (Ando-Akatsuka et al, 1999; Asakura et al, 1999). Furthermore, ZO-1 is associated with the formation of polarization in epithelial cells (Itoh et al, 1997; Fanning et al, 1998). Our results show that expression of ZO-1 is intensely observed from the early stage of odontoblasts (PCs), which suggests that ZO-1 may be necessary for initiation of the assembly of TJs in rat incisor odontoblasts.

Freeze-fracture studies have shown that TJs between odontoblasts appear as short rows of fused particles during early mantle dentin mineralization and become more complex, eventually
forming networks of fused particles in advanced mineralization (Iguchi et al, 1984; Sasaki and Garant, 1996; Arana-Chavez et al, 1997). This suggests that TJs in odontoblasts is associated with dentin mineralization. Our results also show that immuno-reaction of claudin-1 and ZO-2 is relatively weak in PCs, and gradually increases in intensity at distal portions of odontoblasts as they differentiate (PO and YO). Furthermore, the intensity of staining increased with dentin mineralization. These results suggest that claudin-1 and ZO-2 are involved in dentin mineralization.

Immunohistochemically, the localization of TJ-associated proteins was investigated at the distal portion of odontoblasts, which correspond to the distal JC. Furthermore, our immuno-electron microscopic findings indicate that ZO-1 and occludin are diffusely distributed in the JC, while claudin-1 and ZO-2 are localized at the most distal part of the JC, which may correspond to TJs. Particularly, claudin-1 and ZO-2 showed intermittent accumulation of gold particles at cell-to-cell contacts of opposing cells. These results support previous studies that used freeze-fracture replicas to show that the distal ends of plasma membranes of odontoblasts show numerous TJs formed by fused particles and grooves, and that branched and continuous rows of fused particles constitute TJs of the focal or macular type (Sasaki et al, 1982; Iguchi et al, 1984; Calle, 1985; Arana-Chavez et al, 1997, 1998).

Saitou et al. (1998) showed that occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells, and function as a primary barrier against diffusion of a low molecular mass tracer through the paracellular pathway, which suggests that expression of occludin may not be necessary for the assembly of claudin-1 at the TJ area. Furthermore, in tracer studies using lanthanum nitrate, some studies have shown that the tracer can permeate freely between the odontoblasts from the pulp tissues to the pre-dentin (Tanaka, 1980; Iguchi et al, 1984).
Earlier reports imply that occludin may not affect TJ strand formation or the barrier function of intercellular permeability between odontoblasts. Our results show that occludin disappears in YO, the stage where between-cell calcium transport is easily performed. This suggests that expression of occludin may not necessary for assembly of claudin-1 at TJ area, and disappearance of occludin may not affect on TJ strands formation and barrier function of inter-cellular permeability between odontoblasts.

As the expression of claudin-1 increases at the distal portion of mature odontoblasts (YO), TJs form the complex networks of strands and membrane cholesterol and rigidity of the distal plasma membrane increase, and these events may indicate the establishment of a distal membrane domain (Gumbiner, 1990). At the same stage, odontoblasts become to be polarized, finally reorganized cell organelles, matrix vesicle formation ceases, and become to secrete calcium-binding molecules, such as phosphoproteins, to ensure the progression of the mineralization process (Image et al, 1988; Begue-Kirn et al, 1998), and in fact dentin matrix begins to mineralize. Since mineralization of dentin matrix starts almost simultaneously with formation of TJs (Arana-Chavez et al, 1997), we surmise that TJs between odontoblasts may participate in determining the direction of secretion for mineralization, with establishing the distal membrane domain (Fig.4).

CONCLUSION

TJ-associate proteins, such as claudin-1, occludin, ZO-1 and ZO-2 between odontoblasts of rat lower incisors demonstrated different pattern of expression, respectively. We conclude that TJs of odontoblasts in rat lower incisors may play an important role about differentiation.
odontoblasts in early dentinogenesis, especially in determining the direction of secretion for mineralization, with establishing the distal membrane domain.

ACKNOWLEDGMENTS

This study was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (No. 17591926). We are grateful to Mr. Katsumi Tadokoro for his technical assistance.
REFERENCES

FIGURE LEGENDS

Fig. 1:

A: Schematic representation of Takuma and Nagai’s classification dividing the odontoblasts differentiation into five stages, (a) differentiating papilla cell (PC), (b) pre-odontoblasts (PO), (c) young-odontoblast (YO), (d) old-odontoblasts (OO), (e) short-odontoblast (SO), on the basis of their cytological characteristics.

B: The single band of claudin-1, occludin, ZO-1, and ZO-2 were detected approximately at 22 kDa, 60 kDa, 220 kDa, and 160 kDa, respectively.

Fig. 2:

A: Schematic representation of early stages of odontoblast differentiation in a rat lower incisor, showing observation area of each stages PC, PO, and YO by immunofluorescence microscopy.

B: Light micrograph showing immunolabeling for claudin-1, occludin, ZO-1, and ZO-2 in early dentinogenesis in rat lower incisors.

Immunolabeling for claudin-1 (a - d)

a: Light micrograph showing relatively weak reaction for claudin-1 (arrowheads) at most distal portion of PC.

b: Immunolabeling for claudin-1 (arrowheads) was gradually increased as differentiation progressed in PO.

c: In more advanced stage (YO), clear reaction of claudin-1 (arrowhead) was observed at most
distal part of odontoblasts corresponding to the distal JC.

d: At higher magnification, immunoreaction for claudin-1 showing the mesh network structures were evident in YO.

Immunolabeling for occludin (e - g)

e: Light micrograph showing clear expression of occludin *(arrowhead)* at most distal portion of PC.

f: Although immunoreaction for occludin *(arrowheads)* was also detected in PO, it gradually reduced its intensity as differentiation proceed.

g: Immunoreaction for occludin eventually appeared to be absent in YO *(arrowheads)*.

Immunolabeling for ZO-1 (h - k)

h: Light micrograph showing intense labeling for ZO-1 *(arrowheads)* at most distal portion of PC corresponding to the distal JC.

i, j: Clear reaction for ZO-1 *(arrowheads)* was observed through the differentiation process from PC to YO.

k: At higher magnification, immunolabeling for ZO-1 was detected as mesh network-like structures same as claudin-1 in YO.

Immunolabeling for ZO-2 (l - O)

l: Light micrograph showing relatively weak reaction for ZO-2 *(arrowheads)* at most distal portion of PC.

m, n: Positive reaction was gradually increased and clear reaction for ZO-2 *(arrowheads)* were observed at most distal portion of PO and YO.
At higher magnification, immunolabeling for ZO-2 was also recognized as mesh network-like structures same as claudin-1 in YO.

(PC: differentiating papilla cell, PO: pre-odontoblast, YO: young-odontoblast, D: dentin, OB: odontoblast, JC: junctional complex) Bars=20 μm (a, b, c, e, f, g, h, i, j, l, m, n), Bars= 10 μm (d, k, o)

Fig. 3:
Immunoelectron microscopic localization of claudin-1, occludin, ZO-1, and ZO-2 in PO.
A: Immunelectron microscopic image showing 10 nm gold particles indicating claudin-1 were localized at cell-cell contact point observed at most distal part of the distal JC that might be correspond to TJs of odontoblasts (arrowheads).
B: Immunelectron microscopic image showing 10 nm gold particles indicating occludin were diffusely distributed through the distal JC of odontoblasts (arrowheads).
C: Immunelectron microscopic image showing 10 nm gold particles indicating ZO-1 were diffusely distributed through the distal JC of odontoblasts (arrowheads).
D: Immunelectron microscopic image showing 10 nm gold particles indicating ZO-2 were localized at cell-cell contact point observed at most distal part of the distal JC that might be correspond to TJs of odontoblasts (arrowheads).
(PD: pre-dentin, JC: junctional complex)

Fig. 4:
Summary of TJ associated-proteins expression and odontoblast differentiation including
establishment of distal membrane domain, ability or disability of molecule secretion, and TJ formation, in relation to dentine mineralization.

In early stage of odontoblasts (PC), immunoreaction for claudin-1 and ZO-2 are relatively weak, and the TJs form short rows of fused particles. Matrix vesicle releasing and mantle dentin formation is rich. On the other hand, expression of occludin is clear in this stage.

As the expression of claudin-1 and ZO-2 increase at the distal portion of mature odontoblasts (YO), the TJs form the complex networks of strands, and membrane cholesterol and rigidity of the distal plasma membrane increase, which indicate the establishment of distal membrane domain. Immunoreaction for occludin is gradually reduced and eventually appeared to be absent (YO). At the same stage, the odontoblasts become to be polarized, matrix vesicles secretion ceases, and dentin matrix begins to mineralize to form the circum dentin. Immunolabeling for ZO-1 is clearly observed through the differentiation process from PC to YO.
Fig. 1
Fig. 3
Fig. 4